오일러 베타적분(베타함수)
http://bomber0.myid.net/ (토론)님의 2009년 11월 13일 (금) 13:15 판
간단한 소개
\(B(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,dt\)
성질
\(B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\)
\(B(x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta\)
삼각함수의 적분과 감마함수
\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{\sqrt{\pi}}{2} \frac{\Gamma(\frac{p}{2}+\frac{1}{2})}{\Gamma(\frac{p}{2}+1)}\)
\(\int_0^{\frac{\pi}{2}}\sin^{2n}\theta{d\theta}= \frac{\sqrt{\pi}\Gamma(n+\frac{1}{2})}{2\Gamma(n+1)}=\frac{\pi}{2}\frac{(\frac{1}{2})_n}{(1)_n}\)
베타적분과 초월수
(정리)
\(a,b,a+b \in \mathbb{Q-Z}\) 라 하자. \(B(a,b)\) 는 초월수이다. 즉
\(B(a,b) = \frac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}= \int_0^1t^{a-1}(1-t)^{b-1}\,dt\)
는 초월수이다.
타원적분과의 관계
- lemniscate 곡선의 길이와 타원적분
\(L=2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Beta_integral
- http://www.wolframalpha.com/input/?i=Beta+integral
- http://www.wolframalpha.com/input/?i=Beta(1/2,1/4)
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)