원분체 (cyclotomic field)
이 항목의 스프링노트 원문주소
간단한 소개
- 크로네커-베버 정리
- cyclotomic units
갈루아군
\(\zeta_n\)는 원시 n-단위근이고 \(K = \mathbb Q(\zeta_n)\)라 하자.
\(\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)
\(G=\text{Gal}(K/\mathbb Q) \)
\(\wp \subset K\) 는 소수 p 를 나누는 unramified prime ideal이라 하자.
소수 p에 대한 아틴 심볼은 \(\sigma_p(\alpha)=\alpha ^p \pmod \wp\) 를 만족시키는 \(\sigma_p \in \text{Gal}(K/\mathbb Q)\) 로 정의
\(\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b\) 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존
데데킨트 제타함수
- \(K = \mathbb Q(\zeta_n)\)에 대한 데데킨트 제타함수
\(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\)
\(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\) 이므로 \(\hat{G}\)는
(정리)
\(\prod_{\chi\in \hat{G}}L(s,\chi)=\zeta_K(s)\)
디리클레 class number 공식과의 관계
\(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\)
재미있는 사실
역사
관련된 항목들
- 원분다항식(cyclotomic polynomial)
- 이차 수체(quadratic number fields) 의 정수론
- 가우스와 정17각형의 작도
- 데데킨트 제타함수
- 정규소수 (regular prime)
- 베르누이 다항식
- 로바체프스키와 클라우센 함수
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/원분체
- http://en.wikipedia.org/wiki/cyclotomic_field
- http://www.wolframalpha.com/input/?i=cyclotomic_field
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Explicit elliptic units, I
- Farshid Hajir and Fernando Rodriguez Villegas, Duke Math. J. Volume 90, Number 3 (1997), 495-521.
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서 및 추천도서
- Introduction to Cyclotomic Fields
- Lawrence C. Washington, Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1982
- Lawrence C. Washington, Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1982
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)