유한체 위의 정수론과 기하학
이 항목의 수학노트 원문주소==
 
 
개요
 
 
 
코드
- (*choose the range l for the number of primes*)
 l := 50
 (*choose a polynomial to work with*)
 Pol := x^2 - 5
 disc := Discriminant[Pol, x]
 (*choose a modulus*)
 M := 5
 Pr[l_] := Table[Prime[n], {n, 1, l}]
 S := Pr[l]
 (*output*)
 Print["discriminant of polynomial", " ", Pol // TraditionalForm]
 disc
 (*decomposition of the given polynomial modulo p*)
 TableForm[Table[{Mod[p, M], Factor[Pol, Modulus -> p]}, {p, S}],
  TableHeadings -> {S, {"residue class", "decomposition"}},
  TableAlignments -> Center] 
 
 
메모
 
 
관련된 항목들
 
 
사전 형태의 자료
 
 
관련논문
- Koblitz, Neal. 1982. Why Study Equations over Finite Fields? Mathematics Magazine 55, no. 3 (May 1): 144-149. doi:10.2307/2690080. 
 
- http://www.jstor.org/action/doBasicSearch?Query=
 
- http://www.ams.org/mathscinet
 
- http://dx.doi.org/
 
l := 50
(*choose a polynomial to work with*)
Pol := x^2 - 5
disc := Discriminant[Pol, x]
(*choose a modulus*)
M := 5
Pr[l_] := Table[Prime[n], {n, 1, l}]
S := Pr[l]
(*output*)
Print["discriminant of polynomial", " ", Pol // TraditionalForm]
disc
(*decomposition of the given polynomial modulo p*)
TableForm[Table[{Mod[p, M], Factor[Pol, Modulus -> p]}, {p, S}],
TableHeadings -> {S, {"residue class", "decomposition"}},
TableAlignments -> Center]