포물선
이 항목의 스프링노트 원문주소
==개요
- 주어진 한 직선 \(l\)과 점\(P\) 에 대하여, 직선 \(l\)에서의 거리와 점\(P\)와의 거리가 같은 점들의 자취
- 여기서 주어진 직선을 준선, 점을 초점이라 한다.
- 원뿔을 모선과 평행하게 자른 단면에서 얻어지는 원뿔곡선의 하나
- 이차곡선의 하나
==곡선의 방정식
- 중학교 과정에서는 이차함수 \(y=ax^2+bx+c\), \(a\neq 0\)의 그래프로 얻어지는 곡선
- 초점이 \((p,0)\) 준선이 직선 \(x=-p\) 로 주어지는 포물선의 방정식은 \(y^2=4px\)이다
==광학적 성질
- 빛의 경로 문제
- [/pages/1981880/attachments/889380 p.r.jpg] (사진 출처 : 위키)
==예
- 포락선(envelope)과 curve stitching 에서 등장한 곡선 \(x^2-2 x y-20 x+y^2-20 y+100=0\) 이 포물선임을 보이자.
- 이차곡선과 회전변환 의 결과를 이용할 수 있다
- 회전변환 \(x\to \frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}},y\to \frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}\) 를 이용하면, 새로운 방정식 \(10 \sqrt{2} X=Y^2+50\) 를 얻는다
- \(Y^2=10 \sqrt{2} (X-5/\sqrt{2})\)
==포물선이라는 단어의 유래
- 던져진 물체가 그리는 자취를 포물선이라 한다
==메모
- 여러 기하학적인 성질들
- 포물선과 그 초점을 지나는 임의의 직선이 만드는 두 교점을 지름의 양 끝으로 하는 원은 항상 준선에 접한다.
- <생활 속의 포물선>의 예시로 흔히 등장하는 빨랫줄이나 현수교의 곡선은, 사실 포물선이 아니다. (링크 참조.)
==관련된 개념 및 나중에 더 배우게 되는 것들
- 이차곡선
- 미분
- 포물선에서 접선을 구하는 방법
- 적분
- 포물선 아래의 면적을 구하는 방법
==관련있는 다른 과목
- 물리
- 중력
- 체육
- 공던지기