함수 다이로그 항등식(functional dilogarithm identity)
개요
- 로저 다이로그 함수 (Roger's dilogarithm) 가 만족시키는 두 함수 항등식의 일반화
- 2항 관계식, 반사공식(오일러)
\(0\leq x \leq 1\) 일 때, \(L(x)+L(1-x)=L(1)\) - 5항 관계식 (5-term relation)
\(0\leq x,y\leq 1\) 일 때, \(L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy} )\right)=3L(1)\)
 
 - 2항 관계식, 반사공식(오일러)
 - 클러스터 대수(cluster algebra) 를 이용하여 일반화됨
 - n 변수로 구성된 \((n^2+3n)/2\) 항 관계식을 찾을 수 있음
 
 
 
2항 관계식
\(S=\left\{x,\frac{1}{x}\right\}\)
\(\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{1}{x}+1}\right)+L\left(\frac{1}{x+1}\right)=L(1)\)
 
 
5항 관계식
\(S=\left\{x,y,\frac{x+1}{y},\frac{y+1}{x},\frac{x+y+1}{x y}\right\}\)
\(\sum_{a\in S}L(\frac{1}{1+a})=L\left(\frac{1}{\frac{x+1}{y}+1}\right)+L\left(\frac{1}{\frac{y+1}{x}+1}\right)+L\left(\frac{1}{\frac{x+y+1}{x y}+1}\right)+L\left(\frac{1}{x+1}\right)+L\left(\frac{1}{y+1}\right)=2L(1)\)
 
 
9항 관계식
\(\left\{x,y,z,\frac{x z+x+z+1}{y},\frac{x y+x z+x+y^2+y z+2 y+z+1}{x y z},\frac{x z+x+y+z+1}{x y},\frac{x z+x+y+z+1}{y z},\frac{y+1}{x},\frac{y+1}{z}\right\}\)
\(\sum_{a\in S}L(\frac{1}{1+a})=3L(1)\)
 
 
14항 관계식
\(\left\{x,z,\frac{(x+1) (z+1)}{y},\frac{z+1}{w},\frac{x z+x+y+z+1}{x y},\frac{(w+z+1) (x z+x+y+z+1)}{w y z},\frac{(y+z+1) (w (x+y+1)+x z+x+y+z+1)}{w x y z}, \frac{w (x+y+1)+x z+x+y+z+1}{y z},\frac{w y+w+y+z+1}{w z},\frac{(x+y+1) (w y+w+y+z+1)}{x y z},\frac{(w+1) (y+1)}{z},\frac{y+1}{x},w,y\right\}\)
\(\sum_{a\in S}L(\frac{1}{1+a})=4L(1)\)
 
 
 
역사
 
 
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxMzA0M2NkMzMtYTFiNy00N2YwLTlmYzktYWI2YTYwMDMyOTQz&sort=name&layout=list&num=50
 - http://www.wolframalpha.com/input/?i=
 - http://functions.wolfram.com/
 - NIST Digital Library of Mathematical Functions
 - The On-Line Encyclopedia of Integer Sequences
 - Numbers, constants and computation
 
 
 
수학용어번역
 
 
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/
 - The Online Encyclopaedia of Mathematics
 - NIST Digital Library of Mathematical Functions
 - The World of Mathematical Equations
 
 
 
리뷰논문, 에세이, 강의노트
관련논문
- Chapoton, Frédéric. 2005. “Functional Identities for the Rogers Dilogarithm Associated to Cluster Y-Systems.” Bulletin of the London Mathematical Society 37 (5) (October 1): 755 -760. doi:10.1112/S0024609305004510.
 - Algebraic Dilogarithm Identities ,Basil Gordon and Richard J. Mcintosh, 1997
 - L.J. Rogers, On Function Sum Theorems Connected with the Series Formula Proc. London Math. Soc. (1907) s2-4(1): 169-189 doi:10.1112/plms/s2-4.1.169
 - http://www.jstor.org/action/doBasicSearch?Query=
 - http://www.ams.org/mathscinet
 - http://dx.doi.org/10.1112/plms/s2-4.1.169
 
 
 
관련도서