황금비

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 6월 26일 (금) 13:28 판
둘러보기로 가기 검색하러 가기

목차


  1. 정오각형과 황금비
  2. 황금비와 피보나치 수열
  3. 황금비와 정이십면체
  4. 연분수
  5. 유리수 근사와 황금비
  6. 로저스-라마누잔 연분수
  7. Dilogarithm
  8. 재미있는 사실
  9. 관련된 단원
  10. 많이 나오는 질문
  11. 관련된 고교수학 또는 대학수학
  12. 관련된 다른 주제들
  13. 관련도서 및 추천도서
  14. 참고할만한 자료
  15. 동영상
  16. 관련기사

 

 

 

황금비

 

  •  

[[Media:|]]

 

 

 

정오각형과 황금비#
  • 정오각형의 한 변의 길이와 대각선의 길이의 비율은 황금비가 된다.

[/pages/3002548/attachments/1344232 180px-Ptolemy_Pentagon.svg.png]

 

\({b \over a}={{(1+\sqrt{5})}\over 2}\)

 

 

황금비와 피보나치 수열#

[/pages/2252978/attachments/1347082 goldenrectangle.jpg]

 

 

황금비와 정이십면체#

[[|Golden rectangles in an icosahedron]]


  • 황금사각형 세 개가 이루는 꼭지점이 정이십면체의 꼭지점이 된다

 

 

연분수#

\(\frac{1+\sqrt5}{2}=1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\)

 

유리수 근사와 황금비#

무리수 \(\alpha\) 에 대하여,

\(|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}\)

는 무한히 많은 p,q 에 의하여 만족된다. 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.

 

 

로저스-라마누잔 연분수#

\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)

 

Dilogarithm#

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

재미있는 사실#

 

 

관련된 단원#

 

 

많이 나오는 질문#

 

관련된 고교수학 또는 대학수학#

 

 

관련된 다른 주제들#

 

관련도서 및 추천도서#

 

 

참고할만한 자료#

 

동영상#

 

관련기사#

네이버 뉴스 검색 (키워드 수정)