세르 관계식 (Serre relations)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 07:40 판 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 수학노트 원문주소

 

 

개요

  • simple 리대수의 특별한 생성원이 만족시키는 관계식
  • 카르탄 행렬이 주어질 때, 리대수를 생성원과 관계식으로 얻을 수 있다
  • 캐츠-무디 대수로 확장된다

 

 

세르 관계식

  • l : 리대수 \(\mathfrak{g}\)의 rank 
  • \((a_{ij})\) : 카르탄 행렬
  • 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
  • 세르 관계식
    • \(\left[h_i,h_j\right]=0\)
    • \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
    • \(\left[h_i,e_j\right]=a_{i,j}e_j\)
    • \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
    • \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
  • ad 는 adjoint 의 약자
    • \(\left(\text{ad} x\right){}^{3}\left(y\right)=[x, [x, [x, y]]]\)
    • \(\left(\text{ad} x\right){}^{4}\left(y\right)=[x, [x, [x, [x, y]]]]\)

 

 

sl(3)의 예

  • 카르탄 행렬
    \(\left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right)\)
  • \(i\neq j\) 일 때
    \(\left(\text{ad} e_i\right){}^{2}\left(e_j\right)=[e_i, [e_i,e_j]]=0\)
    \(\left(\text{ad} f_i\right){}^{2}\left(f_j\right)=[f_i, [f_i,f_j]]=0\)

 

 

 

UEA 에서의 관계식

  • 카르탄행렬이 \((a_{ij})\) 로 주어지는 리대수 \(\mathfrak{g}\)의 UEA \(U(\mathfrak{g})\) 에서 다음의 두 식
    \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\)), \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))
  • 다음과 같이 표현할 수 있다
    \(\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}e_{i}^{1-a_{i,j}-k}e_{j}e_{i}^k=0\)
    \(\sum_{k=0}^{1-a_{i,j}}(-1)^k \binom{1-a_{i,j}}{k}f_{i}^{1-a_{i,j}-k}f_{j}f_{i}^k=0\)
  • 풀어 쓰면 다음과 같은 형태가 된다
    \(x\otimes x\otimes y-2 x\otimes y\otimes x+y\otimes x\otimes x\)
    \(x\otimes x\otimes x\otimes y-3 x\otimes x\otimes y\otimes x+3 x\otimes y\otimes x\otimes x-y\otimes x\otimes x\otimes x\)
    \(x\otimes x\otimes x\otimes x\otimes y-4 x\otimes x\otimes x\otimes y\otimes x+6 x\otimes x\otimes y\otimes x\otimes x-4 x\otimes y\otimes x\otimes x\otimes x+y\otimes x\otimes x\otimes x\otimes x\)

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트