아인슈타인 텐서
이 항목의 수학노트 원문주소
개요
- 아인슈타인 텐서 \(\mathbf{G}\)의 성분\[G_{\mu\nu} = R_{\mu\nu} - {1\over2} g_{\mu\nu}R.\]
- 여기서\(g_{\mu \nu}\)는 메트릭 텐서, \(R_{\mu \nu}\) 는 리치 곡률 텐서 (Ricci curvature tensor) , \(R\)은 리치 곡률 스칼라
- 일반상대성 이론에서 중요한 역할
아인슈타인 장방정식
- relativistic matter field equation\[G_{\mu \nu} + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}\] 또는 \(R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}\)
여기서 \(\Lambda\)는 우주상수, \(T_{\mu \nu}\)는 스트레스-에너지 텐서
역사
메모
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Einstein_field_equations
- http://en.wikipedia.org/wiki/Einstein–Hilbert_action
- http://en.wikipedia.org/wiki/Friedmann–Lemaître–Robertson–Walker_metric
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트