대칭다항식
Pythagoras0 (토론 | 기여)님의 2013년 11월 30일 (토) 16:27 판
개요
- n 변수의 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 의 모든 permutation에 의해서 불변일 때, 대칭다항식이라 한다 ( 대칭군 (symmetric group) )
- 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 중에서 두 변수를 바꾸는 permutation 즉 transposition 에 의해 부호가 바뀔 때, 이를 교대다항식(alternating polynomial)이라 한다
대칭다항식의 예
- 세 변수의 경우
- \(x_1+x_2+x_3\)
- \(x_1 x_2+x_1 x_3+x_2 x_3\)
- \(x_1 x_2 x_3\)
well-known bases
- M : 단항 대칭 다항식 (monomial symmetric polynomial)
- E : 초등 대칭 다항식 (elementary symmetric polynomial)
- H : 완전 동차 대칭 다항식 (complete homogeneous symmetric polynomial)
- S : 슈르 다항식(Schur polynomials)
- algebraic independence result (Ruffini, around 1800)
- 거듭제곱의 합 power sums
- A. Girard
- Waring
- 근과 계수에 관한 뉴턴-지라드 항등식
(정리)
$E(-x)P(x)=x E'(-x)$
where
$P(x)=\sum_{i\geq 1} x_i^{n}x^n$
$E(x)=x^{n}-e_1 x^{n-1}+e_2 x^{n-2}+\cdots$
$H(x)=\prod_{i}\frac{1}{1-x x_i}$
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
- 대칭군 (symmetric group)
- 대칭군의 character에 대한 프로베니우스 공식
- 근과 계수에 관한 뉴턴-지라드 항등식
- 반데몬드 행렬과 행렬식 (Vandermonde matrix)
- 교대다항식(alternating polynomial)
- 코쉬 행렬과 행렬식
사전 형태의 자료
리뷰논문, 에세이, 강의노트
- Alain Lascoux, Symmetric functions
- J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)
관련도서
- Lascoux, Alain. 2003. Symmetric Functions and Combinatorial Operators on Polynomials. American Mathematical Soc.
- I. G.Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, second edition, Oxford, 1995.