이차형식 x^2+27y^2

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 15일 (수) 05:00 판
둘러보기로 가기 검색하러 가기

개요

  • \(\mathcal{O}=\mathbb{Z}(\sqrt{-27})\subset K=\mathbb{Q}(\sqrt{-3})\)
  • ring class field \(K(\sqrt[3]{2})=\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})\)




소수가 \(x^2+27y^2\) 꼴로 쓰여질 필요충분조건

  • \(p>3\) 이 소수라 하자. 다음 조건은 동치이다
    • \(x^2+27y^2=p\)의 정수해가 존재한다
    • \(p\equiv 1\pmod 3\) 이고, \(x^3-2\equiv0\pmod p\) 가 해를 갖는다
    • \(p\equiv 1\pmod 3\) 이고, 2가 \(\mod p\)로 cubic residue 이다


\(x^3\equiv 2\pmod p\) 의 해의 개수

  • 3, \(p\equiv 1\pmod 3\) 이고 \(p=x^2+27y^2\)형태로 쓸 수 있는 경우
  • 2, 불가능
  • 1, \(p \not\equiv1 \pmod 3\) 인 경우
  • 0, \(p\equiv 1\pmod 3\) 이고 \(p=x^2+27y^2\)형태로 쓸 수 없는 경우


테이블

  • 맨 오른쪽의 $\{x,y\}$는 $x^2+27y^2=p$의 해이며, 없는 경우는 0로 나타내었다

$$\begin{array}{c|c|c|c} p & p \bmod 3 & x^3-2 \pmod p & \{x,y\} \\ \hline 2 & 2 & x^3 & 0 \\ 3 & 0 & (x+1)^3 & 0 \\ 5 & 2 & (x+2) \left(x^2+3 x+4\right) & 0 \\ 7 & 1 & x^3+5 & 0 \\ 11 & 2 & (x+4) \left(x^2+7 x+5\right) & 0 \\ 13 & 1 & x^3+11 & 0 \\ 17 & 2 & (x+9) \left(x^2+8 x+13\right) & 0 \\ 19 & 1 & x^3+17 & 0 \\ 23 & 2 & (x+7) \left(x^2+16 x+3\right) & 0 \\ 29 & 2 & (x+3) \left(x^2+26 x+9\right) & 0 \\ 31 & 1 & (x+11) (x+24) (x+27) & \{2,1\} \\ 37 & 1 & x^3+35 & 0 \\ 41 & 2 & (x+36) \left(x^2+5 x+25\right) & 0 \\ 43 & 1 & (x+9) (x+11) (x+23) & \{4,1\} \\ 47 & 2 & (x+26) \left(x^2+21 x+18\right) & 0 \\ 53 & 2 & (x+35) \left(x^2+18 x+6\right) & 0 \\ 59 & 2 & (x+21) \left(x^2+38 x+28\right) & 0 \\ 61 & 1 & x^3+59 & 0 \\ 67 & 1 & x^3+65 & 0 \\ 71 & 2 & (x+22) \left(x^2+49 x+58\right) & 0 \\ 73 & 1 & x^3+71 & 0 \\ 79 & 1 & x^3+77 & 0 \\ 83 & 2 & (x+33) \left(x^2+50 x+10\right) & 0 \\ 89 & 2 & (x+73) \left(x^2+16 x+78\right) & 0 \\ 97 & 1 & x^3+95 & 0 \\ 101 & 2 & (x+75) \left(x^2+26 x+70\right) & 0 \\ 103 & 1 & x^3+101 & 0 \\ 107 & 2 & (x+101) \left(x^2+6 x+36\right) & 0 \\ 109 & 1 & (x+6) (x+51) (x+52) & \{1,2\} \\ 113 & 2 & (x+32) \left(x^2+81 x+7\right) & 0 \end{array} $$


역사



메모



관련된 항목들


매스매티카 파일 및 계산 리소스