기저와 선형결합
개요
예
\(v_{1}=(1, 0)\)
\(v_{2}=(-\sqrt{3}/2, 1/2)\)
$$ \begin{array}{|rcl|} \hline (1,0) & = & v_1 \\ \hline \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right) & = & \sqrt{3} v_1+v_2 \\ \hline \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right) & = & 2 v_1+\sqrt{3} v_2 \\ \hline (0,1) & = & \sqrt{3} v_1+2 v_2 \\ \hline \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right) & = & v_1+\sqrt{3} v_2 \\ \hline \left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right) & = & v_2 \\ \hline (-1,0) & = & -v_1 \\ \hline \left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) & = & -\sqrt{3} v_1-v_2 \\ \hline \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) & = & -2 v_1-\sqrt{3} v_2 \\ \hline (0,-1) & = & -\sqrt{3} v_1-2 v_2 \\ \hline \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) & = & -v_1-\sqrt{3} v_2 \\ \hline \left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) & = & -v_2 \\ \hline \end{array} $$
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들