Galois symmetry in the WZW fusion ring

수학노트
imported>Pythagoras0님의 2015년 12월 15일 (화) 14:44 판
둘러보기로 가기 검색하러 가기

articles

  • Jürgen Fuchs, Bert Schellekens and Christoph Schweigert, Quasi-Galois symmetries of the modularS-matrix 1996
  • Fuchs, J., A. N. Schellekens, and C. Schweigert. 1995. “Galois Modular Invariants of WZW Models.” Nuclear Physics. B 437 (3): 667–694. doi:10.1016/0550-3213(94)00577-2.
  • Gannon, Terry. 1995. “Symmetries of the Kac-Peterson Modular Matrices of Affine Algebras.” Inventiones Mathematicae 122 (2): 341–357. doi:10.1007/BF01231448. http://dx.doi.org/10.1007/BF01231448
  • Fuchs, Jürgen, Beatriz Gato-Rivera, Bert Schellekens, and Christoph Schweigert. 1994. “Modular Invariants and Fusion Rule Automorphisms from Galois Theory.” Physics Letters. B 334 (1-2): 113–120. doi:10.1016/0370-2693(94)90598-3.
  • Coste, A., and T. Gannon. “Remarks on Galois Symmetry in Rational Conformal Field Theories.” Physics Letters B 323, no. 3–4 (March 17, 1994): 316–21. doi:10.1016/0370-2693(94)91226-2 http://dx.doi.org/10.1016/0370-2693%2894%2991226-2
  • Boer, Jan de, and Jacob Goeree. “Markov Traces and ${\rm II}_1$ Factors in Conformal Field Theory.” Communications in Mathematical Physics 139, no. 2 (1991): 267–304.
  • WZW commutants, lattices and level-one partition functions http://www.sciencedirect.com/science/article/pii/055032139390669G
  • Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B 402, 1993, pp