Quantum dilogarithm
http://bomber0.myid.net/ (토론)님의 2011년 6월 30일 (목) 05:46 판
introduction[1]
Knot and invariants from quantum dilogarithm
- [Kashaev1995]
- a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
- The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
- this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
- It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.
history
- Boson and Fermion summation form
- asymptotic analysis of basic hypergeometric series
- Quantum groups
- Kashaev's volume Conjecture
encyclopedia
- q-적분
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- Quantum dilogarithm.
- Wadim Zudilin, Preprint, Bonn and Moscow (2006)
- Notes on Construction of the Knot Invariant from Quantum Dilogarithm Function
- The hyperbolic volume of knots from quantum dilogarithm
- R. M. Kashaev, 1996
- Remarks on the quantum dilogarithm
- V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217
- [Kashaev1995]A link invariant from quantum dilogarithm
- Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
- Quantum Dilogarithm as a 6j-Symbol
- R. M. Kashaev, MPLA Volume: 9, Issue: 40(1994) pp. 3757-3768
- R. M. Kashaev, MPLA Volume: 9, Issue: 40(1994) pp. 3757-3768
- Quantum Dilogarithm
- L.D.Fadeev and R.M.Kashaev, Mod. Phys. Lett. A. 9 (1994) p.427–434
- http://ncatlab.org/nlab/show/quantum+dilogarithm
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[2]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1023/A:1007364912784
question and answers(Math Overflow)
blogs
experts on the field