Simple exclusion process
imported>Pythagoras0님의 2016년 3월 8일 (화) 07:44 판 (section 'articles' updated)
introduction
- example of a non-equilibrium model in statistical mechanics
- Gibbs-Boltzmann formation is not valid
- exclusion rule forbids to have more than one particle per site
- The simple exclusion process is a model of a lattice gas with an exclusion principle
- diffusion
- introduced in 1960's in biology for RNA
- analysed in 1990's
formulation
- a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
- special cases
- symmetric exclusion process $p=q=1/2$
- asymmetric simple exclusion process (ASEP) $p\neq q$
- totally asymmetric exclusion process (TASEP) $p=1,q=0$
- for example, $\delta=\gamma=q=0$ model for traffic flow
- particles jumping from left ro right or from right ro left with given probabilities $p$ and $q$ ($p+q=1$)
dynamical rules
- $P(C,t)$ be the probability for configuration $C$ at time $t$
- $P(C,t)$ is a solution of the master equation
$$ \frac{\partial P(C,t)}{\partial t}=\sum_{C':C'\neq C}P(C',t)W(C'\to C)-\left(\sum_{C':C'\neq C}W(C\to C')\right)P(C,t) $$
key concepts
spin chain
- master equation and the formalism using the Hamiltonian of the spin chain
- Heisenberg spin chain model can be viewed as a exclusion process (time evolution)
critical exponent
- relaxation time $\tau$ towards equilibrium
- spatial correlation length $\xi$
- dynamical critical exponent $z$ given by $\tau \sim \xi^z$
- for one-dimensional quantum spin chains $\tau \sim L^z$ where $L$ is the length of the spin chain
Bethe ansatz
$\tau$ is dominated by the eigenvalue of the Hamiltonian with the smallest real part
- thus the finite size analysis of the Hamiltonian gives
$$ \Re(E_1)\sim \frac{1}{L^z} $$
- so we need to compute $E_1$ to get $z$
- this is where the Bethe ansatz comes in
two species model
- two species asymmetric diffusion model that describes two species and vacancies diffusing asymmetrically on a one-dimensional lattice
- use algebraic Bethe Ansatz
- find the finite-size scaling behavior of the lowest lying eigenstates of the quantum Hamiltonian describing the model and compute the dynamical critical exponent
- Multi-species asymmetric simple exclusion process
memo
- Random matrix
- Random processes
- Limit shapes in random processes
- KPZ equation
- Heisenberg spin chain model
- Bethe ansatz
- Finite size effect
- Tetrahedron equation
encyclopedia
expositions
- Mallick, Kirone. ‘The Exclusion Process: A Paradigm for Non-Equilibrium Behaviour’. arXiv:1412.6258 [cond-Mat], 19 December 2014. http://arxiv.org/abs/1412.6258.
- Kaufmann, Bethe ansatz for two species totally asymmetric diffusion
- Golinelli, Olivier, and Kirone Mallick. 2006. The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. Journal of Physics A: Mathematical and General 39, no. 41 (10): 12679-12705. doi:10.1088/0305-4470/39/41/S03.
articles
- Sylvain Prolhac, Finite-time fluctuations for the totally asymmetric exclusion process, 10.1103/PhysRevLett.116.090601, http://dx.doi.org/10.1103/PhysRevLett.116.090601, Phys. Rev. Lett. 116 (2016) 090601, http://arxiv.org/abs/1511.04064v3
- Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:10.1007/s002200050027.