Beilinson conjectures

수학노트
imported>Pythagoras0님의 2013년 12월 26일 (목) 09:39 판 (새 문서: ==introduction== * generalizations of # the Lichtenbaum conjectures for K-groups of number rings # the Hodge conjecture # the Tate conjecture about algebraic cycles # the Birch and S...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

introduction

  • generalizations of
  1. the Lichtenbaum conjectures for K-groups of number rings
  2. the Hodge conjecture
  3. the Tate conjecture about algebraic cycles
  4. the Birch and Swinnerton-Dyer conjecture about elliptic curves
  5. Bloch's conjecture about K2 of elliptic curves
  • the Beĭlinson conjectures describe the leading coefficients of L-series of varieties over number fields up to rational factors in terms of generalized regulators


related items


question and answers(Math Overflow)


expositions

  • Nekovár, Jan. "Beilinson’s conjectures." U. Jannsen, SL Kleiman, J.–P. Serre,“Motives”, Proceedings of the Research Conference on Motives held July. 1994. http://www.math.jussieu.fr/~nekovar/pu/mot.pdf
  • Deninger, Christopher, and Anthony J. Scholl. 1991. “The Beilinson Conjectures.” In $L$-Functions and Arithmetic (Durham, 1989), 153:173–209. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.ams.org/mathscinet-getitem?mr=1110393.


articles