Root system of affine Kac-Moody algebra

수학노트
imported>Pythagoras0님의 2015년 5월 6일 (수) 20:50 판 (새 문서: ==introduction== * <math>\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n \neq 0\}</math> * real roots ** <math>\{\alpha+n\delta|\alpha\in\Phi^...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

introduction

  • \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n \neq 0\}\)
  • real roots
    • \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
    • multiplicity 1 [Carter Cor14 .16 and Prop16 .18]
    • roots coming from the simple Lie algebra
  • imaginary roots
    • \(\{n\delta|n\in\mathbb{Z},n \neq 0\}\)
    • has norm zero i.e. \(\delta^2=0\)
    • multiplicity is not always 1 but equal to the rank of the simple Lie algebra
  • simple roots
    • \(\alpha_0,\alpha_1,\cdots,\alpha_r\)
  • positive roots

\[\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\]


related items