Talk on String functions and quantum affine algebras

수학노트
둘러보기로 가기 검색하러 가기

abstract

The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.

key message

  • string functions know about Kirillov-Reshetikhin modules

review of affine Lie algebras and their integrable representations

affine Lie algebras

  • Affine Kac-Moody algebra
  • \overline{\mathfrak{g}}$ : complex simple Lie algebra of rank $r$ assoc. to Cartan matrix $(a_{ij})_{i,j\in \overline{I}}$, $\overline{I}=\{1,\cdots, r\}$
  • untwisted affine Kac-Moody algebra $\mathfrak{g}$

$$\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$$

  • \((a_{ij})_{i,j\in I}\) : extended Cartan matrix $I=\{0\}\cup \overline{I}$
  • can be also defined as a Lie algebra with generators \(e_i,h_i,f_i , (i=0,1,2,\cdots, r)\) and relations, for example,
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
  • basis of the Cartan subalgebra $\mathfrak{h}$; \(h_0,h_ 1,\cdots,h_r,d\)
  • dual basis for $\mathfrak{h}^{*}$; \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta\)
  • we call \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r\) the fundamental weights and \(\delta\) the imaginary root
  • simple roots \(\alpha_0,\alpha_1,\cdots,\alpha_r\)
  • $a_i,\, i=0,1,\dots, r$ : marks
  • $a_i^{\vee},\, i=0,1,\dots, r$ : comarks
  • distinguished elements
    • longest root of $\overline{\mathfrak{g}}$ : $\theta = \sum_{i=1}^{r}a_i\alpha_i$
    • central element \(c=\sum_{i=0}^{r}a_i^{\vee}h _i\)
    • imaginary root \(\delta=\sum_{i=0}^{r}a_i\alpha_i\)
    • Weyl vector \(\rho=\sum_{i=0}^{r}\Lambda_i\)

remarks on affine weights

  • call $k=\lambda(c)$ the level of $\lambda\in \mathfrak{h}^{*}$
  • sometimes convenient to write $\lambda\in \mathfrak{h}^{*}$ as $\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}$ where $k=\lambda(c)$, $\overline{\lambda}$ is the restriction of $\lambda$ on $\overline{\mathfrak{h}}$, $\xi=\lambda(\delta)$
    • $\Lambda_0 = (a_0^{\vee};0;0)$
    • $\Lambda_i = (a_i^{\vee};\omega_i;0)$, for $i=1,\dots, r$ ($\omega_i$ is fundamental weight for $\overline{\mathfrak{g}}$)
    • $\delta = (0;0;0)$, for $i=1,\dots, r$
    • $\alpha_0 = (0;-\theta;1)$
    • $\alpha_i = (0;\alpha_i;0)$, for $i=1,\dots, r$ ($\alpha_i$ simple root for $\overline{\mathfrak{g}}$)
  • bilinear form $(\cdot|\cdot)$ on $\mathfrak{h}^{*}$
    • $\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}$
  • normalize $(\cdot|\cdot)$ so that $(\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2$
  • sometimes write $\overline{\lambda} = (0;\overline{\lambda};0)$ by abusing notation
  • let $Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}$ (root lattice of $\overline{\mathfrak{g}}$)
  • define $M\subseteq Q$ : $M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}$ where $\alpha_i^{\vee}=t_i\alpha_i$ where $t_i=\frac{2}{(\alpha_i|\alpha_i)}$

affine Weyl group

  • Affine Weyl group
  • The affine Weyl group $W$ is generated by $s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}$ defined by

$$s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i$$ for $i=0,1, \cdots, r$.

  • for $\gamma\in \mathfrak{h}^{*}$, define $t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}$ by

$$t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta $$

thm

Let $T=\{t_{\gamma}|\gamma\in M\}$. Then $W=\overline{W} \ltimes T$

integrable representations and characters

  • Unitary representations of affine Kac-Moody algebras
  • for each $\lambda\in \mathfrak{h}^{*}$, $\exists$ irreducible $\mathfrak{g}$-module $L(\lambda)$ (quotient of Verma module)
  • A $\mathfrak{g}$-module $V$ is integrable if $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$ and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i=0,1,\cdots, r$
  • $\Lambda\in \mathfrak{h}^{*}$ is dominant integral if $\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r$
  • let $P_{+}$ be the set of dominant integral weights, i.e. $\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\}

$

thm

Let $V$ be an irreducible $\mathfrak{g}$-module in a certain category $\mathcal{O}$. Then $V=L(\Lambda)$ for some $\Lambda\in \mathfrak{h}^{*}$ and $L(\Lambda)$ is integrable if and only if $\Lambda\in P_{+}$

  • why care irreducible and integrable representation? Weyl's character formula holds
  • character of \(L(\Lambda)\)

$$\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}$$

thm (Weyl-Kac formula)

Let $\Lambda\in P_{+}$. Then $$ \operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})} $$

remark

For actual computation of $m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)$, more practical to use Freudenthal multiplicity formula $$ (|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha} $$

string functions

def

For each $\lambda\in \mathfrak{h}^{*}$, the string function $c_{\lambda }^{\Lambda}$ is $$ c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta} $$ where $m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}$ and $m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}$

  • note that $m_{\Lambda}=h_{\Lambda}-\frac{c_{\Lambda}}{24}+\xi$ where $h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}$ and $c_{\Lambda}=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}$ (these number frequently appear in rep. theory of Virasoro algebra)
remarks
  • modular form of weight $-r/2$ after setting $q:=e^{-\delta}$
  • an explicit expression for the string functions is not known in general
  • the few that are known were guessed using the modular transformations
  • $c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}$ for $w\in W$
  • Theta functions in Kac-Moody algebras
  • for each $\lambda\in P^k$, define the theta function as

$$ \Theta_{\lambda}= e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma} $$

  • A weight $\lambda$ of $L(\Lambda)$ is maximal if $\lambda+\delta$ is not a weight
  • the set $\max(\Lambda)$ of maximal weights is stable under $W$


thm

$$ e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda} $$

proof

$$ \begin{aligned} \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta} && \text{(any weight $\mu$ is of the form $\lambda-n \delta$ for some unique $\lambda, n$)} \\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\left(\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda} \end{aligned} $$ ■


asymptotic growth of coefficients

  • modularity of $c_{\lambda }^{\Lambda}$ implies
thm (Kac-Peterson)

Let $\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)$. As $n\to \infty$, $$ \log (\operatorname{mult}_{\Lambda}(\lambda-n\delta))\sim (\frac{2C_{\Lambda}\pi^2n}{3})^{1/2} $$

conjectural formula for string functions

$$ K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr) (\alpha_a \vert \alpha_b) $$

conjecture [KNS93]

We have \begin{equation}\label{qkns} c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r= \sum_{\{N^{(a)}_m\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell} K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}} {\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})} \end{equation} up to a rational power of $q$, where $\eta$ is the Dedekind eta function .

The outer sum is over $N^{(a)}_m \in \Z_{\ge 0}$ such that $$\sum_{(a,m) \in H_\ell}mN^{(a)}_m\alpha_a \equiv \overline{\lambda} \mod \ell M.$$

example

  • let $\mathfrak{g}=A_1$
  • consider the vacuum representation of level $\ell$
thm [Lepowski-Primc 1985]

$$ c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}} {\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})} $$ where the sum is under the constraint $ \sum_{m=1}^{\ell-1} m N_m \equiv 0 \ \mathrm{mod}\ \ell$.

memo

$$ \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}} $$


related items