Affine sl(2)
http://bomber0.myid.net/ (토론)님의 2010년 3월 4일 (목) 12:33 판
Gannon 190p, 193p, 196p,371p
construction
- Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
- say \(\mathfrak{g}=A_2\), \(\Phi=\{\alpha_1,\alpha_2\}\)
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\) - Find the highest root \(\sum a_l\alpha_l\)
- \(\alpha_1+\alpha_2\)
- \(\alpha_1+\alpha_2\)
- Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha_1-\alpha_2\)
- \(\alpha_0=-\alpha_1-\alpha_2\)
- Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}\) - Note that this matrix has rank 2 since \((1,1,1)\) belongs to the null space