Quantum modular forms
imported>Pythagoras0님의 2013년 4월 5일 (금) 01:36 판
example
- unimodular generating function
$$ U(w;q)=\sum_{n=0}^{\infty}(wq;q)_{n}(w^{-1}q;q)_{n}q^{n+1} $$
$$R(w;q)=\sum_{n=0}^\infty \frac{q^{n^2}}{(wq;q)_n(w^{-1}q;q)_n}$$
$$C(w;q)=\frac{(q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}}$$
- limit formula $\zeta_b=e^{2\pi i/b}$, $1\le a <b$, for every root of unity $\zeta$, there exists an integer $c$ such that
$$ \lim_{q\to \zeta} R(\zeta_{b}^{a};q)-\zeta_{b^2}^{c} C(\zeta_{b}^{a};q)=-(1-\zeta_{b}^{a})(1-\zeta_{b}^{-a})U(\zeta_{b}^{a};\zeta) $$
special case
- If $b=2$ and $a=1$, then $\zeta_{b}^{a}=-1$
- $U(-1;\zeta)$ becomes a finite sum if $\zeta$ is a root of unity
$$ U(-1;\zeta)=\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$
- $R(-1;q)=f(q)$ and $C(-1;q)=b(q)$ in 3rd order mock theta functions
- Thus if $\zeta$ be even $2k$ order root of unity
$$ \lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$
computational resource
articles
- Rolen, Larry, and Robert P. Schneider. 2013. “A ‘Strange’ Vector-Valued Quantum Modular Form.” arXiv:1304.1210 (April 3). http://arxiv.org/abs/1304.1210.
- Bryson, Jennifer, Ken Ono, Sarah Pitman, and Robert C. Rhoades. 2012. “Unimodal Sequences and Quantum and Mock Modular Forms.” Proceedings of the National Academy of Sciences 109 (40) (October 2): 16063–16067. doi:10.1073/pnas.1211964109.
- Zagier, Don. 2010. “Quantum Modular Forms.” In Quanta of Maths, 11:659–675. Clay Math. Proc. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2757599.