Affine sl(2)
introduction
- affine sl(2) \(A^{(1)}_1\)
 - 틀:수학노트
 
construction from semisimple Lie algebra
- this is borrowed from affine Kac-Moody algebra entry
 - Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(\langle \cdot,\cdot \rangle\)
 - say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha,-\alpha\}\)
 - Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root  \(\alpha\)
 - Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as an independent one now.
 - Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
 - construct a Lie algebra from the new Cartan matrix \(A'\)
 - Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
 
\[\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}\]
basic quantities
- $a_i=1$
 - $c_i=a_i^{\vee}=1$
 - $a_{ij}$
 - coxeter number 2
 - dual Coxeter number 2
 - Weyl vector
 
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 
 - \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 - imaginary roots   
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - \(\delta=\alpha_0+\alpha_1\)
 
 - simple roots
- \(\alpha_0,\alpha_1\)
 
 - \(\alpha_0,\alpha_1\)
 - positive roots
 
\[\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\]
fixing a Cartan subalgebra and its dual
- H is a 3-dimensional space
 - basis of the Cartan subalgebra H (this defines C and l_0 also)
 
\[h_0=C-h_1 \\ h_1\\d=-l_0\]
- basis of the dual of H \[\omega_0,\alpha_0,\alpha_1\]
 - pairing
 
$$ \begin{array}{c|ccc} {} & \alpha _0 & \alpha _1 & \omega _0 \\ \hline h_0 & 2 & -2 & 1 \\ h_1 & -2 & 2 &0 \\ d & 1 & 0 & 0 \\ \end{array} $$
- dual basis for H \[\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1\]
 
$$ \begin{array}{c|ccc} {} & \omega_0 & \omega_1 & \delta \\ \hline h_0 & 1 & 0 & 0 \\ h_1 & 0 & 1 &0 \\ d & 0 & 0 & a_0=1 \\ \end{array} $$
- Weyl vector \[\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1\]
 
killing form
- invariant symmetric non-deg bilinear forms, $\langle h_i,h_j\rangle =A_{ij}$, $\langle h_0,d\rangle =1$, $\langle h_1,d\rangle =0$, $\langle d,d\rangle =0$,
 - with centers (note that $C=h_0+h_1$), $\langle C,h_0\rangle =0$, $\langle C,h_1\rangle =0$, $\langle C,d\rangle =1$,
 
 
 
explicit construction
- start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $,
 - make a vector space from it,
 - Construct a Loop algbera $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$
 - Let $\alpha(m)=\alpha\otimes t^m$,
 - Add a central element to get a central extension $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$, and give a bracket $$[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c$$
 
$$[H(m),E(n)]=2E\otimes t^{m+n}$$ $$[H(m),F(n)]=-2F\otimes t^{m+n}$$ $$[E(m),E(n)]=[F(m),F(n)]=0$$ $$\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0$$
- Add a derivation $d$, $d=t\frac{d}{dt}$ to get $\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$
 
$$d(\alpha(n))=n\alpha(n)$$ $$d(c)=0$$ $$\langle c,d\rangle =0$$
- Define a Lie bracket $[d,x]=d(x)$
 
level k highest weight representation
- integrable highest weight
 
\[\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1,\quad \lambda_{i}\in\mathbb{N}\]
- level
 
\[k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\]
- therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
 
 
 
central charge
- unitary representations of affine Kac-Moody algebras
 - central charge (depends on the level only)
 
\[c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\]
- conformal weight
 
\[h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\]
- definition of conformal anomaly
 
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\]
- strange formula
 
\[\frac{\langle \rho,\rho \rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
 - conformal anomaly
 
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}\]
 
vertex operator construction
characters of irreducible representations
$$ \operatorname{ch} L(\lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}} $$
- Let $M=M^{*}=\mathbb{Z}\alpha_1$
 - the affine Weyl group $W=t(M^{*})W^{0}$ where $t(M^{*})$ is the set $t_{\alpha} : H^{*} \to H^{*}$ given by
 
$$ t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta $$
- note that this is linear
 - $\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1$
 - $s_{\alpha_1}(\omega_0+\omega_1)=3\omega_0-\omega_1$
 - in general
 
$$ s_{\alpha_0}(m\omega_0+n\omega_1)=-m \delta - m \omega_0 + (2 m + n) \omega_1\\ s_{\alpha_1}(m\omega_0+n\omega_1)=(m+2n)\omega_0-n\omega_1 $$
- $t_{n\alpha_1}\omega_0=\omega_0+n\alpha_1-n^2\delta$
 - $t_{n\alpha_1}\alpha_1=\alpha_1-2n\delta$
 - $w\in W$ can be written as $(n\alpha_1,\pm 1)$
 
denominator formula
- if $w=(n\alpha_1,1)$, $e^{w\cdot 0}=e^{w\rho-\rho}=e^{2n\alpha_1-n(2n+1)\delta}$
 - if $w=(n\alpha_1,-1)$, $e^{w\cdot 0}=e^{w\rho-\rho}=e^{-(2n-1)\alpha_1-n(2n-1)\delta}$
 - let us write down the Weyl-Kac denominator formula explicitly
 
$$ \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho} = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}\label{WK} $$
- the LHS of \ref{WK} can be written as
 
$$ \begin{align} \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho}&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n-1)\alpha_1-n(2n-1)\delta}\\ & =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n-1}q^{n(2n-1)}\\ & =\sum_{m}(-1)^m z^{m}q^{m(m-1)/2} \end{align} $$ where $z=e^{-\alpha_1}$ and $q=e^{-\delta}$
- the RHS of \ref{WK} can be written as
 
$$ \begin{align} \prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\ & = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right) \end{align} $$ from \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
- we obtain 틀:수학노트
 
basic representation
- Let $\lambda=\omega_0$
 - let us use the Weyl-Kac formula
 
$$ \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}} $$
- if $w=(n\alpha_1,1)$, $e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-3 \delta n^2+3 \alpha _1 n-\delta n+\omega _0}$
 - if $w=(n\alpha_1,-1)$, $e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-\alpha _1-3 \delta n^2+3 \alpha _1 n+\delta n+\omega _0}$
 - we get
 
$$ \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}} $$
- this can be rewritten as
 
$$ \operatorname{ch} L(\omega_0)=\frac{\sum_{\mu\in Q}e^{\omega_0+\mu-\frac{1}{2}\langle \mu,\mu \rangle \delta}}{\prod_{k>0}(1-q^k)}=\frac{e^{\omega_0}\sum _{n=-\infty }^{\infty } z^{-n} q^{n^2}}{(q;q)_{\infty }} $$ where $z=e^{-\alpha_1}, q = e^{−\delta}$.
highest weight representations
- level $k$
 - highest weight $\omega=(k-l)\omega_0+l\omega_1$
 - character
 
$$ \chi(L(\omega))=\frac{\theta_{k+2,l+1}-\theta_{k+2,-l-1}}{\theta_{2,1}-\theta_{2,-1}} $$ where $$ \theta_{k,l}=\sum_{r\in \mathbb{Z}+\frac{l}{2k}}e^{kr}q^{kr^2} $$
- Modular invariant partition functions of affine sl(2)
 - sl(2) - orthogonal polynomials and Lie theory
 - vertex algebras
 - Quantum affine sl(2)
 
computational resource
books
- Gannon 190p, 193p, 196p,371p
 
articles
- Zeitlin, Anton M. “On the Unitary Representations of the Affine $ax+b$-Group, $\widehat{sl}(2,\mathbb{R})$ and Their Relatives.” arXiv:1509.06072 [hep-Th, Physics:math-Ph], September 20, 2015. http://arxiv.org/abs/1509.06072.
 - Bakalov, Bojko, and Daniel Fleisher. “Bosonizations of $\widehat{\mathfrak{sl}}_2$ and Integrable Hierarchies.” arXiv:1407.5335 [math], July 20, 2014. http://arxiv.org/abs/1407.5335.
 - Dong, Jilan, and Naihuan Jing. 2014. “Realizations of Affine Lie Algebra A_^(1) at Negative Levels.” arXiv:1405.0339 [hep-Th], May. doi:10.1007/978-3-642-55361-5_36. http://arxiv.org/abs/1405.0339.
 - Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. Communications in Mathematical Physics 62 (1): 43-53. doi:10.1007/BF01940329.