Mahler measure

수학노트
imported>Pythagoras0님의 2015년 1월 17일 (토) 16:45 판 (→‎expositions)
둘러보기로 가기 검색하러 가기

introduction

  • for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]$, the (logarithmic) Mahler measure is defined to be

$$ \begin{aligned} m(P):&=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n\\ &= \frac{1}{(2\pi i)^n}\int_{|x_1|=\dots=|x_n|=1} \log|P(x_1,\dots,x_n)| \; \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n} \end{aligned} $$


monic polynomial

  • For a monic polynomial in one variable $P \in \mathbb{C}[x]$ one can compute $m(P)$ by Jensen's formula

$$ \frac{1}{2\pi i}\int_{|x|=1} \log|P(x)| \; \frac{dx}{x} = \sum_{\alpha:P(\alpha)=0} \max(0,\log|\alpha|)\,, $$

  • but no explicit formula is known for polynomials in several variables.

example

  • $m(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^{10})=0.1623576120\cdots$
  • $m(x^3-x-1)=0.28119957432\cdots$
  • $m(x^3+x+1)=0.382245085840\cdots$


Multivariate Mahler measure

Smyth

thm [Smith1981]

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$

$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$


Rodriguez-Villegas

conjecture

$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$

$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$


related items

computational resource


encyclopedia


expositions


lecture notes

articles

links