특이값 분해
노트
- a numeric or complex matrix whose SVD decomposition is to be computed.[1]
 - The singular value decomposition plays an important role in many statistical techniques.[1]
 - SVD can be used to find a generalized inverse matrix.[2]
 - Then, using SVD, we can essentially compress the image.[2]
 - PCA can be achieved using SVD.[2]
 - Multi-dimensional scaling can also be achieved using SVD.[2]
 - Calculating the SVD consists of finding the eigenvalues and eigenvectors of AAT and ATA.[3]
 - The final section works out a complete program that uses SVD in a machine-learning context.[4]
 - SVD is known under many different names.[4]
 - We have already seen in Equation (6) how an SVD with a reduced number of singular values can closely approximate a matrix.[4]
 - Because n is large, however, the algorithm takes too long or is unstable, so we want to reduce the number of variables using SVD.[4]
 - In this paper, we modify a classical downdating SVD algorithm and reduce its complexity significantly.[5]
 - Perhaps the most known and widely used matrix decomposition method is the Singular-Value Decomposition, or SVD.[6]
 - All matrices have an SVD, which makes it more stable than other methods, such as the eigendecomposition.[6]
 - The SVD is calculated via iterative numerical methods.[6]
 - The singular value decomposition (SVD) provides another way to factorize a matrix, into singular vectors and singular values.[6]
 - In this article, I will try to explain the mathematical intuition behind SVD and its geometrical meaning.[7]
 - To understand SVD we need to first understand the Eigenvalue Decomposition of a matrix.[7]
 - Before talking about SVD, we should find a way to calculate the stretching directions for a non-symmetric matrix.[7]
 - Now we can summarize an important result which forms the backbone of the SVD method.[7]
 - The SVD also captures indirect connections.[8]
 - The transaction item matrix is centered, scaled, and divided by nTran minus 1 before the singular value decomposition is carried out.[8]
 - The SVD implementation takes advantage of the sparsity of the transaction item matrix.[8]
 - Otherwise, it can be recast as an SVD by moving the phase of each σ i to either its corresponding V i or U i .[9]
 - The singular value decomposition can be used for computing the pseudoinverse of a matrix.[9]
 - The SVD can be thought of as decomposing a matrix into a weighted, ordered sum of separable matrices.[9]
 - The SVD can be used to find the decomposition of an image processing filter into separable horizontal and vertical filters.[9]
 - SVD allows us to extract and untangle information.[10]
 - In this article, we will detail SVD and PCA.[10]
 - SVD gives you the whole nine-yard of diagonalizing a matrix into special matrices that are easy to manipulate and to analyze.[10]
 - Let’s introduce some terms that frequently used in SVD.[10]
 - Here the SVD is used to perform a pseudoinverse of an otherwise ill-conditioned operator.[11]
 - For image processing and large scale inverse problems this requires the SVD of a large matrix.[11]
 - SVD is suited to regularisation because one has access to the singular values of the operator.[11]
 - Another feature of SVD is that it reveals the rank of the operator, useful in many imaging algorithms and signal processing applications.[11]
 - The most fundamental dimension reduction method is called the singular value decomposition or SVD.[12]
 - The SVD is a matrix decomposition, but it is not tied to any particular statistical method.[12]
 - SVD and Signal Processing II: Algorithms, Analysis and Applications, edited by R. Vaccaro, Elsevier Science Publishers, North Holland, 1991.[13]
 - x a numeric or complex matrix whose SVD decomposition is to be computed.[14]
 - There are a few caveats one should be aware of before computing the SVD of a set of data.[15]
 - The svd function computes the singular value decomposition of the SST dataset weighted over the cosine of the latitude.[15]
 - A weight term, however, is not necessary to complete the SVD analysis.[15]
 - This will remove the normalized eigenvector variable selection and return you to the SVD page.[15]
 - The SVD represents the essential geometry of a linear transformation.[16]
 - Recall that the diagonal elements of the Σ matrix (called the singular values) in the SVD are computed in decreasing order.[16]
 - In SAS, you can use the SVD subroutine in SAS/IML software to compute the singular value decomposition of any matrix.[16]
 - To save memory, SAS/IML computes a "thin SVD" (or "economical SVD"), which means that the U matrix is an n x p matrix.[16]
 - SVD produces two sets of orthonormal bases (U and V).[17]
 - The singular value decomposition (SVD) is a generalization of the algorithm we used in the motivational section.[18]
 - As in the example, the SVD provides a transformation of the original data.[18]
 - It is not immediately obvious how incredibly useful the SVD can be, so let’s consider some examples.[18]
 - Let’s compute the SVD on the gene expression table we have been working with.[18]
 - This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data.[19]
 - Gene expression data are currently rather noisy, and SVD can detect and extract small signals from noisy data.[19]
 - SVD and PCA are common techniques for analysis of multivariate data, and gene expression data are well suited to analysis using SVD/PCA.[19]
 - In section 1, the SVD is defined, with associations to other methods described.[19]
 
소스
- ↑ 1.0 1.1 R Documentation
 - ↑ 2.0 2.1 2.2 2.3 Examples of Singular Value Decomposition | R Code Fragments
 - ↑ Singular Value Decomposition (SVD) tutorial
 - ↑ 4.0 4.1 4.2 4.3 Singular Value Decomposition (SVD) Tutorial: Applications, Examples, Exercises
 - ↑ A fast and stable algorithm for downdating the singular value decomposition
 - ↑ 6.0 6.1 6.2 6.3 How to Calculate the SVD from Scratch with Python
 - ↑ 7.0 7.1 7.2 7.3 Understanding Singular Value Decomposition and its Application in Data Science
 - ↑ 8.0 8.1 8.2 Singular Value Decomposition
 - ↑ 9.0 9.1 9.2 9.3 Singular value decomposition
 - ↑ 10.0 10.1 10.2 10.3 Machine Learning — Singular Value Decomposition (SVD) & Principal Component Analysis (PCA)
 - ↑ 11.0 11.1 11.2 11.3 Singular Value Decomposition - an overview
 - ↑ 12.0 12.1 16.1 - Singular Value Decomposition
 - ↑ Singular Value Decomposition
 - ↑ R: Singular Value Decomposition of a Matrix
 - ↑ 15.0 15.1 15.2 15.3 Singular Value Decomposition
 - ↑ 16.0 16.1 16.2 16.3 The singular value decomposition: A fundamental technique in multivariate data analysis
 - ↑ Singular Value Decomposition
 - ↑ 18.0 18.1 18.2 18.3 Singular Value Decomposition
 - ↑ 19.0 19.1 19.2 19.3 Singular value decomposition and principal component analysis