Rank of partition and mock theta conjecture

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 16일 (월) 03:36 판
둘러보기로 가기 검색하러 가기

order 3 Ramanujan mock theta function

  • 3rd order mock theta functions \[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]
  • coefficients 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244

 

Andrews-Dragonette

  • [Dragonette1952] and [Andrews1966]
  • concerns the question of partitions with even rank and odd rank
  • rank of partition =  largest part - number of parts 9의 분할인 {7,1,1}의 경우, rank=7-3=4 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of the 3rd order mock theta functions

\[f(q) = \sum_{n\ge 0} \alpha(n)q^n\]

  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method

 

 

harmonic Maass form of weight 1/2

  • Zweger's completion

 

 

construction of the Maass-Poincare series

 

 

generalization

  • crank

 

 

history


 

related items


computational resource


expositions


articles