Characters of superconformal algebra and mock theta functions
introduction
\(\mathcal{N}=4\) superconformal algebra
generators and relations
\[[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\]
\[[J_m^i,J_n^j]=\epsilon_{ijk}J_{m+n}^k+\delta_{m+n}\delta^{i,j}\frac{c}{3},\quad i,j,k\in \{1,2,3\},\quad m,n\in \mathbb{Z}\] \[[L_m,J_n^i]=-nJ_{m+n}^i,\quad m,n\in \mathbb{Z}\]
- fermionic operators
\[ G_r^a,\overline{G}_s^b,\quad a,b\in \{1,2\} \]
\(c=6k\) with \(k=1\) case
- non-BPS characters \[h>k/4,\ell=1/2\]
\[ \operatorname{ch}^{\tilde R}_{h=1/4+n,\ell=0}=q^{h-3/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}=q^{n-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \]
- BPS characters \[h=1/4,\ell=0,1/2\]
\[ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=\frac{[\theta_{11}(z;\tau)]^2}{\eta^3}\mu(z;\tau)\\ \operatorname{ch}^{\tilde R}_{h=1/4,\ell=1/2}+2\operatorname{ch}^{\tilde R}_{h=1/4,\ell=0}=q^{-1/8}\frac{[\theta_{11}(z;\tau)]^2}{\eta^3} \] where \(\mu(z;\tau)\) is the Appell-Lerch sums which is a holomorphic part of a mock modular form
- this is related to Mathieu moonshine and the elliptic genus of K3 surface
\(k\geq 2\) case
- this is related to Umbral moonshine and elliptic genus of hyperKahler manifolds of complex dimension \(2k\)
history
- 1986 Eguchi-Taoimina \(\mathcal{N}=4\) superconformal algebra
- 1990 Odake, \(\mathcal{N}=2\) superconformal algebra
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
- http://en.wikipedia.org/wiki/N_%3D_2_superconformal_algebra
- http://en.wikipedia.org/wiki/Super_Virasoro_algebra
- http://www.scholarpedia.org/
articles
- Tohru Eguchi and Kazuhiro Hikami Superconformal Algebras and Mock Theta Functions, 2009
- Kawai, Toshiya, Yasuhiko Yamada, and Sung-Kil Yang. 1994. “Elliptic Genera and N = 2 Superconformal Field Theory.” Nuclear Physics B 414 (1–2) (February 14): 191–212. doi:10.1016/0550-3213(94)90428-6.
- Odake, Satoru. 1990. “c=3d conformal algebra with extended supersymmetry.” Modern Physics Letters A 05 (08) (March 30): 561–580. doi:http://dx.doi.org/10.1142/S0217732390000640.
- Odake, Satoru. 1990. “Character formulas of an extended superconformal algebra relevant to string compactification” International Journal of Modern Physics A 05 (05) (March 10): 897–914. doi:http://dx.doi.org/10.1142/S0217751X90000428.
- Eguchi, Tohru, and Anne Taormina. 1987. “Unitary Representations of the N=4 Superconformal Algebra.” Physics Letters B 196 (1) (September 24): 75–81. doi:10.1016/0370-2693(87)91679-0.
- Eguchi, Tohru, Hirosi Ooguri, Anne Taormina, and Sung-Kil Yang. 1989. “Superconformal Algebras and String Compactification on Manifolds with SU(n) Holonomy.” Nuclear Physics B 315 (1) (March 13): 193–221. doi:10.1016/0550-3213(89)90454-9.
- Yutaka Matsuo Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
메타데이터
메타데이터
위키데이터
- ID : Q6956294
Spacy 패턴 목록
- [{'LOWER': 'n'}, {'LOWER': '='}, {'LOWER': '2'}, {'LOWER': 'superconformal'}, {'LEMMA': 'algebra'}]