양의 정부호 행렬(positive definite matrix)
개요
- 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, \(v^{T}M v > 0 \) 를 만족시킬 때, 양의 정부호 행렬이라 한다
- 실베스터 판정법 - leading principal minor 가 모두 양수이면 양의 정부호 행렬이다
- 다변수함수의 극점을 분류하는 헤세 판정법 에 응용할 수 있다
2×2 행렬의 경우
- 행렬\[\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\]
- principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{c} a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)
- leading principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)
3×3 행렬의 경우
- 행렬\[\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\]
- principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\),\(\left( \begin{array}{c} a_{2,2} \end{array} \right)\),\(\left( \begin{array}{c} a_{3,3} \end{array} \right)\) \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)\), \(\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)\) \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)
- leading principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\)\(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)
예
- 다음과 같은 5x5 행렬을 생각하자\[\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\]
- leading principal submatrix와 그 행렬식을 구하면 다음과 같다\[\begin{array}{ll} \left( \begin{array}{c} 2 \end{array} \right) & 2 \\ \left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right) & 3 \\ \left( \begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right) & 4 \\ \left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right) & 5 \\ \left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right) & 1 \end{array}\]
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Positive-definite_matrix
- http://en.wikipedia.org/wiki/Sylvester's_criterion
리뷰논문, 에세이, 강의노트
관련논문
- Gilbert, George T. 1991. “Positive Definite Matrices and Sylvester’s Criterion”. The American Mathematical Monthly 98 (1) (1월 1): 44-46. doi:10.2307/2324036.
메타데이터
위키데이터
- ID : Q77601250