양의 정부호 행렬(positive definite matrix)

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 05:20 판 (→‎메타데이터: 새 문단)
둘러보기로 가기 검색하러 가기

개요

  • 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, \(v^{T}M v > 0 \) 를 만족시킬 때, 양의 정부호 행렬이라 한다
  • 실베스터 판정법 - leading principal minor 가 모두 양수이면 양의 정부호 행렬이다
  • 다변수함수의 극점을 분류하는 헤세 판정법 에 응용할 수 있다




2×2 행렬의 경우

  • 행렬\[\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\]
  • principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{c} a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)

  • leading principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)



3×3 행렬의 경우

  • 행렬\[\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\]
  • principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\),\(\left( \begin{array}{c} a_{2,2} \end{array} \right)\),\(\left( \begin{array}{c} a_{3,3} \end{array} \right)\) \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)\), \(\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)\) \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)

  • leading principal submatrix

\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\)\(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)




  • 다음과 같은 5x5 행렬을 생각하자\[\left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right)\]
  • leading principal submatrix와 그 행렬식을 구하면 다음과 같다\[\begin{array}{ll} \left( \begin{array}{c} 2 \end{array} \right) & 2 \\ \left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right) & 3 \\ \left( \begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right) & 4 \\ \left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right) & 5 \\ \left( \begin{array}{ccccc} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right) & 1 \end{array}\]



메모



관련된 항목들



매스매티카 파일 및 계산 리소스


수학용어번역




사전 형태의 자료


리뷰논문, 에세이, 강의노트

관련논문

  • Gilbert, George T. 1991. “Positive Definite Matrices and Sylvester’s Criterion”. The American Mathematical Monthly 98 (1) (1월 1): 44-46. doi:10.2307/2324036.

메타데이터

위키데이터