월리스 곱 (Wallis product formula)
개요
- 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다
\[\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\] \[\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\]
- 스털링이 드무아브르가 남긴 문제를 해결할때 이 월리스의 공식을 사용 \[\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}\]
- 이는 다음을 말해준다
\[\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\]
증명
- 다음과 같이 수열 \(\{a_n\}\)을 정의하자 \[a_n:=\int_0^{\pi}\sin^{n}\theta{d\theta}= B(\frac{n+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{n}{2}+\frac{1}{2})}{\Gamma(\frac{n}{2}+1)}\] 여기서 \(B(x,y)\)는 오일러 베타적분.
- 수열 \(\{a_n\}\)은 다음 점화식을 만족시킨다 \[a_0=\pi,a_1=2,\] \[a_{n}=\frac{n-1}{n}a_{n-2} \label{rec}\]
- 보조정리1
\[\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\label{prod}\]
- 증명
\ref{rec}로부터 다음을 얻는다 \[\frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{4 k^2-1}{4 k^2}\] 으로부터 \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\prod _{k=1}^n \frac{4 k^2-1}{4 k^2}\]을 얻는다. 한편, \[\prod _{k=1}^n \frac{a_{2k}}{a_{2k-2}}\frac{a_{2k-1}}{a_{2k+1}}=\frac{a_{1}a_{2n}}{a_{0} a_{2n+1}}=\frac{\frac{a_{2n}}{a_{2n+1}}}{\pi /2}\] 로부터 \ref{prod}을 얻는다. ■
- 보조정리2
\[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1 \label{lim}\]
- 증명
\(a_{n}\)은 단조감소수열이므로, 다음 부등식이 성립한다 \[1 \le \frac{a_{2n}}{a_{2n+1}} \le \frac{a_{2n-1}}{a_{2n+1}}=\frac{2n+1}{2n}\] 우변에서는 \ref{rec}이 사용되었다. 따라서 샌드위치 정리에 의해 \[\lim_{n\to \infty } \, \frac{a_{2 n}}{a_{2 n+1}}=1\] ■
보조정리1과 보조정리2로부터 월리스 곱을 얻는다 ■
사인함수의 무한곱 표현을 이용한 증명
- 다음 사인함수의 무한곱 표현에서 \(x=1/2\) 일 때, 월리스 곱을 얻는다
\[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]
- 삼각함수의 무한곱 표현 항목 참조
역사
- 수학사 연표
- 1655 - 존 월리스가 Arithmetica Infinitorum를 저술
- 드무아브르의 발견은 대략 1730년대 즈음
- 데카르트(1596년 3월-1650년 2월)
- 뉴턴(1643년 1월-1727년 3월)
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
사전형태의 자료
블로그
- 드무아브르의 중심극한정리(iii) : 숫자 파이와 동전던지기 피타고라스의 창, 2008-7-12
관련논문
- Friedmann, Tamar, and C. R. Hagen. “Quantum Mechanical Derivation of the Wallis Formula for \(\pi\).” arXiv:1510.07813 [math-Ph, Physics:quant-Ph], October 27, 2015. http://arxiv.org/abs/1510.07813.
메타데이터
위키데이터
- ID : Q208359
Spacy 패턴 목록
- [{'LOWER': 'john'}, {'LEMMA': 'Wallis'}]