라마누잔-셀베르그 연분수
http://bomber0.myid.net/ (토론)님의 2012년 7월 24일 (화) 08:45 판
introduction
- [Duke2005] (9.1)
\(u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}\)
\(v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} } \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\)
- Selberg continued fractions [Duke2005] (9.13, 155p)
\(S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}\)
\(S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}\)
S1 and S2 are notations from [Chan2009] - q-series 의 공식 모음
relation with other modular functions
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- From a Ramanujan-Selberg continued fraction to a Jacobian identity
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Modular relations and explicit values of Ramanujan-Selberg continued fractions
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Explicit evaluations of a Ramanujan-Selberg continued fraction
- Liang-Cheng Zhang, 2002
- Liang-Cheng Zhang, 2002
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1090/S0002-9947-02-03155-0
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field