라마누잔의 정적분

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:33 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요== \(\int_{0}^{\infty}\frac{x e^{-\sqrt{5}x}}{\cosh{x}}\,dx=\frac{1}{8}(\psi^{(1)}(\frac{1+\sqrt{5}}{4})-\psi^{(1)}(\frac{3+\sqrt{5}}{4}))\) Integrate[(x Exp[-x Sqrt[5]])/Cosh[x], {x, 0, \[Infinity]}] //  FullSimplify [%28x+Exp[-x+Sqrt[5]%29/Cosh[x],+%7Bx,+0,+[Infinity]%7D]+ http://www.wolframalpha.com/input/?i=Integrate[(x+Exp[-x+Sqrt[5]])/Cosh[x],+{x,+0,+[Infinity]}]+] [1,%281%2Bsqrt%285%29%29/4-polygamma[1,%283%2Bsqrt%285%29%29/4]%29/8 http://www.wolframalpha.com/input/?i=(polygamma[1,(1%2Bsqrt(5))/4]-polygamma[1,(3%2Bsqrt(5))/4])/8]   \(\int_{0}^{\infty}\frac{x^{2}e^{-\sqrt{3}x}}{\sinh{x}}\,dx=-\frac{1}{4}\psi^{(2)}(\frac{1+\sqrt{3}}{4})\) Integrate[(x^2 Exp[-x Sqrt[3]])/Sinh[x], {x, 0, \[Infinity]}] //FullSimplify [%28x%5E2+Exp[-x+Sqrt[3]%29/Sinh[x],+%7Bx,+0,+Infinity%7D] http://www.wolframalpha.com/input/?i=integrate[(x^2+Exp[-x+Sqrt[3]])/Sinh[x],+{x,+0,+Infinity}]] [2,%281%2Bsqrt%283%29%29/2/4 http://www.wolframalpha.com/input/?i=-polygamma[2,(1%2Bsqrt(3))/2]/4]     Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc., 1995.    
재미있는 사실==    
역사==      
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==    
관련기사==    
블로그==