바이어슈트라스 타원함수 ℘

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 7월 2일 (목) 21:27 판
둘러보기로 가기 검색하러 가기
정의
  • 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여, 
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)

 

  • 는 타원함수가 됨.

 

\(\wp\)의 로랑급수
  • 원점에서의 로랑급수는 다음과 같이 주어짐.
    \(\wp(z)=z^{-2}+\frac{1}{20}g_2z^2+\frac{1}{28}g_3z^4+O(z^6)\)
    여기서 \(g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}\)

 

(증명)

\(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 를 정의하자.

\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}\)