베이커의 정리
http://bomber0.myid.net/ (토론)님의 2009년 12월 18일 (금) 12:22 판
이 항목의 스프링노트 원문주소
베이커의 정리
0이 아닌 대수적수 \(\alpha_1,\cdots,\alpha_n\) 에 대하여 \(\log \alpha_1,\cdots,\log \alpha_n\)이 유리수체 위에서 선형독립이라고 가정하자.
그러면 \(1, \log \alpha_1,\cdots,\log \alpha_n\)은 대수적수체 위에서 선형독립이다.
더 일반적으로 모두 0이 아닌 대수적수 \(\beta_0,\cdots, \beta_n\)에 대하여, \(\beta_0+\sum_{m=1}^{n}\beta_m\log \alpha_m\) 는 초월수이다.
간단한 소개
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)