베이커의 정리
http://bomber0.myid.net/ (토론)님의 2010년 7월 28일 (수) 16:17 판
이 항목의 스프링노트 원문주소
개요
- 겔폰드-슈나이더 정리의 일반화
베이커의 정리
버전1
0이 아닌 대수적수 \(\alpha_1,\cdots,\alpha_n\) 에 대하여 \(\log \alpha_1,\cdots,\log \alpha_n\)이 유리수체 위에서 선형독립이라고 가정하자.
그러면 \(1, \log \alpha_1,\cdots,\log \alpha_n\)은 대수적수체 위에서 선형독립이다.
버전2
0이 아닌 대수적수 \(\alpha_1,\cdots,\alpha_n\)와 대수적수 \(\beta_0,\cdots, \beta_n\)에 대하여, \(\sum_{m=1}^{n}\beta_m\log \alpha_m\) 는 0 또는 초월수이다.
겔폰드-슈나이더 정리
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Baker's_theorem
- http://en.wikipedia.org/wiki/Alan_Baker_(mathematician)
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)