벤포드의 법칙

수학노트
Wiessen (토론 | 기여)님의 2009년 7월 8일 (수) 02:39 판
둘러보기로 가기 검색하러 가기

3780379 와 관련된 내용. 제가 아는 것은 여기에 정리합니다.


벤포드 법칙

 

[1]

미국의 수학자이자 천문학자인 Simon Newcomb 은, 다른 사람과 함께 쓰던 로그책에서 책의 앞부분이 훨씬 낡아 있는 것을 눈치채었다.

로그표는 수가 커지는 순서대로 배열되어 있다. 그러므로 위 결과는, 실제 계산에서는 맨 앞자리수가 큰 숫자보다, 맨 앞자리수가 작은 수가 더 많이 쓰인다는 사실을 말해 준다.

통상의 계산에서, 계산량이 많아지면 모든 크기의 수가 고르게 사용될텐데, 왜 이 수들의 최대 유효숫자는 이렇지 않을까?

Newcomb 은 다음과 같은 경험법칙을 얻는다.

  • 첫 유효숫자 \(d\) 로 시작하는 수의 비율은, (10진법에서) 1/9 가 아니라 \(\log(1 + 1/d)\) 와 같이 나타난다

이 사실을 그는 American Journal of Mathematics 에 간략하게 실었으나, 수학적 분석이 없었으므로 별 주목을 받지 못했음. (1881)

(실제로 AJM 에서 저널을 검색해 볼 수 있으면 좋겠습니다)

\(d\) 직관적 확률 경험적 확률
\(1\) \(0.111\cdots\) \(0.30103\)
\(2\) \(0.111\cdots\) \(0.17609\)
\(3\) \(0.111\cdots\) \(0.12494\)
\(4\) \(0.111\cdots\) \(0.09691\)
\(5\) \(0.111\cdots\) \(0.07918\)
\(6\) \(0.111\cdots\) \(0.06695\)
\(7\) \(0.111\cdots\) \(0.05799\)
\(8\) \(0.111\cdots\) \(0.05115\)
\(9\) \(0.111\cdots\) \(0.04578\)

 

[2]

1938 년 미국 GE 의 물리학자 Frank Benford 가, 위의 Newcomb 가 발견한 것과 정확히 같은 양상 - 즉 곧 첫 유효숫자의 분포는 \(\log(1 + 1/d)\) 와 같이 나타난다 - 을 재발견했다.

벤포드는 경험적 검증을 위해, 강의 넓이, 사망률, 야구 통계 등 전혀 무관한 임의의 20000 여개의 숫자들를 분석했다.

 

[3]