분할수가 만족시키는 합동식
http://bomber0.myid.net/ (토론)님의 2012년 8월 25일 (토) 14:26 판
이 항목의 스프링노트 원문주소
개요
- 라마누잔의 발견
\(p(5k+4)\equiv 0 \pmod 5\)
\(p(7k+5)\equiv 0 \pmod 7\)
\(p(11k+6)\equiv 0 \pmod {11}\)
항등식
\(\sum_{k=0}^\infty p(5k+4)q^k=5\frac{(q^5;q^5)_\infty^5}{(q;q)_\infty^6}\)
\(\sum_{k=0}^\infty p(7k+5)q^k=7\frac{(q^7;q^7)_\infty^3}{(q;q)_\infty^4}+49q\frac{(q^7;q^7)_\infty^7}{(q;q)_\infty^8}\)
역사
메모
관련된 항목들
수학용어번역