분할수의 생성함수(오일러 함수)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:50 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • 분할수의 생섬함수를 오일러함수라고도 한다
  • 분할수의 생성함수는 다음과 같이 무한곱으로 표현가능하다
    \(\sum_{n=0}^\infty p(n)q^n= 1+q+2 q^2+3 q^3+5 q^4+7 q^5+11 q^6+15 q^7+22 q^8+30 q^9+42 q^{10}+\cdots\)
\(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} \)    
오일러의 오각수정리==
  • 위의 급수는 오일러함수의 역이다
    \(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} \)
   
q가 1에 가까울 때의 근사공식== (정리) \(q\to 1\) 일 때, \(F(q)= \prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6(1-q)})\)   (증명) \(\log F(q)= \sum_{n=1}^\infty \log \frac {1}{1-q^n} \right =\sum_{m=1,n=1}^{\infty}\frac{q^{mn}}{m}=\sum_{m=1}\frac{q^m}{m(1-q^m)}\) \(1-q^m=(1-q)(1+q+\cdots+q^{m-1})\)  와 \(0<q<1\) 을 이용하면, \(mq^{m-1}(1-x)<1-q^m<m(1-q)\) 이다. 따라서, \(\frac{1}{1-q}\sum_{m=1}^{\infty}\frac{q^m}{m^2}< \sum_{n=1}^\infty \log \frac {1}{1-q^n} <\frac{1}{1-q}\sum_{m=1}^{\infty}\frac{q}{m^2}\)   q가 1에 가까워질 때,  \(\sum_{m=1}^{\infty}\frac{q^m}{m^2}\to \frac{\pi^2}{6}\),  \(\sum_{m=1}^{\infty}\frac{q}{m^2}\to \frac{\pi^2}{6}\) 이므로, \(F(q)= \prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6(1-q)})\) ■
  • \(q=e^{-\epsilon}\) 으로 두면 \(\epsilon\sim 0\) 일 때, \(1-q\sim \epsilon\) 이고  \(\prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6\epsilon})=\exp(\frac{(2\pi)^2}{24\epsilon})\) 을 얻는다
  • \(\pi^2/6\) 은 오일러와 바젤문제(완전제곱수의 역수들의 합)에 등장하는 수이다
  • Hardy's book 'Ramanujan' on partition asymptotics
     
분할수의 근사공식==      
q-초기하급수 형태로의 표현==   (정리) \(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} =1+\sum_{n=1}^{\infty}\frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)}\)   (증명) 오일러의 무한곱공식을 적용. \(\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) ■     (정리) (Durfee square identity)        
데데킨트 에타함수==    
재미있는 사실==      
역사==      
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==    
관련기사==    
블로그==