3차 방정식의 근의 공식
이 항목의 스프링노트 원문주소
개요
- 삼차방정식 \(ax^3+bx^2+cx+d=0\) 의 근의 공식
카르다노의 해법
주어진 방정식 \(x^3+ax^2+bx+c=0\)의 2차항을 없애기 위해, 다음과 같은 치환을 사용한다.
\(x = t - a/3\)
새로운 방정식 \(t^3 + pt + q = 0\)을 얻는다. 여기서
\(p = b - \frac{a^2}3\) 이고 \(q = c + \frac{2a^3-9ab}{27}\)
새로운 두 변수 u,v를 도입하자.
\(u + v = t\), \(uv = -p/3\)
다음 두 식을 만족시킨다.
\(u^3+v^3+(3uv+p)(u+v)+q=0 \qquad (1)\)
\( 3uv+p=0\)
식 (1)의 양변에 \(u^3\)를 곱하여, 이로부터 u가 만족시키는 다음 방정식을 얻는다.
\(u^6 + qu^3 - {p^3\over 27} = 0 \quad (2)\)
\(u^3\)에 대한 이차방정식이므로, 다음을 얻는다.
\( u^{3}=-{q\over 2}\pm \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}\)
한편, \(v^3\) 역시 방정식 (2)의 해이므로, 다음을 얻는다.
\(v^{3}=-{q\over 2}\pm \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}\)
u, v는 다음 여섯개의 값 중 하나를 가질 수 있다.
\(\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}\), \(\omega\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\), \(\omega^2\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\)
\(\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\), \(\omega\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\), \(\omega^2\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \)
여기서 \(\omega=-\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i\).
\(uv = -p/3\) 임을 이용하면 u에 의해 v의 값이 결정된다.
편의를 위해, 다음과 같이 A,B를 두자.
\(A=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}\), \(B=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\)
\(t=u+v\)의 값은 다음 세 개의 값을 가질 수 있다.
\(A+B\)
\(\omega A+\omega^2 B\)
\(\omega^2 A+\omega B\)
\(x^3-3x+1\)의 예
- 방정식 \(x^3-3x+1=0\) 을 생각하자.
- \(p=-3,q=1\) 이므로,
\(-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}=e^{2\pi i/3}\)
\(-{q\over 2}- \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}=e^{-2\pi i/3}\) - \(A=e^{2\pi i/9}\), \(B=e^{-2\pi i/9}\)
- \(A+B,\omega A+\omega ^2B,\omega ^2A+\omega B\) 는
\(ax^3+bx^2+cx+d=0\)의 근의 공식
\(\begin{align} x_1 = &-\frac{b}{3 a}\\ &-\frac{1}{3 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &-\frac{1}{3 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ x_2 = &-\frac{b}{3 a}\\ &+\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &+\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ x_3 = &-\frac{b}{3 a}\\ &+\frac{1-i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d+\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}}\\ &+\frac{1+i \sqrt{3}}{6 a} \sqrt[3]{\frac{2 b^3-9 a b c+27 a^2 d-\sqrt{\left(2 b^3-9 a b c+27 a^2 d\right)^2-4 \left(b^2-3 a c\right)^3}}{2}} \end{align}\)
역사
- 1545년 카르다노가 'Ars Magna' 를 출판
- 수학사연표
메모
\(u=\sqrt[3]{-{q\over 2}+ \sqrt{{q^{2}\over 4}+{p^{3}\over 27}}}\), \(\left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\), \(\left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\)
\(v=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}, \left( -\tfrac{1}{2}+\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} , \left( -\tfrac{1}{2}-\tfrac{\sqrt{3}}{2}i \right)\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \)
관련된 항목들
수학용어번역