서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷
간단한 소개
\(\left( k_{1}+k_{2}+k_{3}+k_{s} \right)^{2} = 2\, \left( k_{1}^{2} + k_{2}^{2} + k_{3}^{2} + k_{s}^{2} \right)\)
- 네 개의 원이 서로 접할때, 그 곡률(반지름의 역수)가 만족시키는 관계
- 1643년 11월 데카르트
소디의 시
The Kiss Precise by Frederick Soddy
For pairs of lips to kiss maybe
Involves no trigonometry.
'Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.
Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.
To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.
In _Nature_, June 20, 1936
아폴로니우스의 개스킷
The modular group, j-invariant and the singular moduli
하위주제들
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- Introduction to Geometry
- H. S. M. Coxeter
- kiss_precise.pdf
- Indra's Pearls: The Vision of Felix Klein.
- Mumford, David; Series, Caroline; Wright, David
- Cambridge. (2002).
- 도서내검색
- 도서검색
참고할만한 자료
- When Kissing Involves Trigonometry
- AMS Feature Column
- The Problem of Apollonius
- H. S. M. Coxeter
- The American Mathematical Monthly, Vol. 75, No. 1 (Jan., 1968), pp. 5-15
- On a Theorem in Geometry
- Daniel Pedoe
- The American Mathematical Monthly, Vol. 74, No. 6 (Jun. - Jul., 1967), pp. 627-640
- Beyond the Descartes circle theorem
- Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks
- American Mathematical Monthly, 109 (2002), 338-361
- Four Proofs of a Generalization of the Descartes Circle Theorem
- J. B. Wilker
- The American Mathematical Monthly, Vol. 76, No. 3 (Mar., 1969), pp. 278-282
- R.L. Graham, J.C. Lagarias, C.L. Mallows, A. Wilks, and C. Yan,
- Apollonian circle packings: number theory,
- Journal of Number Theory, 100 (2003), 1-45. Available at .
- Apollonian circle packings: geometry and group theory I. The Apollonian group
- Apollonian circle packings: geometry and group theory II. Super-Apollonian group and integral packings
- Apollonian circle packings: geometry and group theory III. Higher dimensions.
- Apollonian circle packings: number theory,
- 구두장이의 칼
- 이광연
- 네이버 오늘의 과학, 2009-5-5
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/soddy_formula
- http://en.wikipedia.org/wiki/Descartes'_theorem
- http://en.wikipedia.org/wiki/Problem_of_Apollonius
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com