서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷
이 항목의 스프링노트 원문주소
데카르트의 정리
[/pages/3214730/attachments/1981213 fourtangents.gif]
- 네 개의 원이 서로 접할때, 그 곡률(반지름의 역수) \(k_i\, (i=1,2,3,4)\) 이 만족시키는 관계
\(\left( k_{1}+k_{2}+k_{3}+k_{s} \right)^{2} = 2\, \left( k_{1}^{2} + k_{2}^{2} + k_{3}^{2} + k_{s}^{2} \right)\) - 1643년 11월 데카르트의 편지
포드 원의 경우
[[Media:|]]
- C[3/5],C[5/8], C[2/3], 수직선에 대해서 데카르트의 정리를 적용해 보자
- 각 원의 곡률은
- 이 네 원은 서로서로 접하므로, 데카르트의 정리가 적용됨
\(k_1=50,k_2=128,k_3=18, k_4=0\)
\(50+128+18+0=196\), \(196^2=38416\)
\(50^2+128^2+18^2+0^2=19208\), \(2\times 19208 = 38416\) - 포드 원에 대해서는 포드 원 (Ford Circles) 항목을 참조
소디의 시
The Kiss Precise by Frederick Soddy
For pairs of lips to kiss maybe 한쌍의 입술이 키스를 할땐
Involves no trigonometry. 삼각함수가 필요하지 않을꺼야.
'Tis not so when four circles kiss 하지만 네 원이 서로 키스를 할땐 그렇지 않지.
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.
Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.
To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.
In _Nature_, June 20, 1936
아폴로니우스의 개스킷
[/pages/3214730/attachments/1982659 600px-Apollonian_gasket.svg.png]
[/pages/3214730/attachments/1982661 plan.gif]
모듈라 군의 fundamental domain
- \(\Gamma(2)\)
- 모듈라 군(modular group) 의 부분군
- fundamental domain 은 다음과 같음
[/pages/3214730/attachments/2026503 modular.jpg]
관련된 항목들
- 클라인군(Kleinian groups)
- The modular group, j-invariant and the singular moduli
- 일본 에도 시대 산액(算額)
- Ford Circles
사전형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/soddy_formula
- http://en.wikipedia.org/wiki/Descartes'_theorem
- http://en.wikipedia.org/wiki/Problem_of_Apollonius
- http://en.wikipedia.org/wiki/Arbelos
- http://en.wikipedia.org/wiki/Ideal_triangle
- [1]http://viswiki.com/en/arbelos
관련도서
- Introduction to Geometry
- H. S. M. Coxeter, kiss_precise.pdf
- Indra's Pearls: The Vision of Felix Klein.
- Mumford, David; Series, Caroline; Wright, David , Cambridge. (2002).
관련논문
- When Kissing Involves Trigonometry
- AMS Feature Column
- The Problem of Apollonius
- H. S. M. Coxeter, The American Mathematical Monthly, Vol. 75, No. 1 (Jan., 1968), pp. 5-15
- On a Theorem in Geometry
- Daniel Pedoe, The American Mathematical Monthly, Vol. 74, No. 6 (Jun. - Jul., 1967), pp. 627-640
- Beyond the Descartes circle theorem
- Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, American Mathematical Monthly, 109 (2002), 338-361
- Four Proofs of a Generalization of the Descartes Circle Theorem
- J. B. Wilker, The American Mathematical Monthly, Vol. 76, No. 3 (Mar., 1969), pp. 278-282
- R.L. Graham, J.C. Lagarias, C.L. Mallows, A. Wilks, and C. Yan,
- Apollonian circle packings: number theory,
- Journal of Number Theory, 100 (2003), 1-45. Available at .
- Apollonian circle packings: geometry and group theory I. The Apollonian group
- Apollonian circle packings: geometry and group theory II. Super-Apollonian group and integral packings
- Apollonian circle packings: geometry and group theory III. Higher dimensions.
- Apollonian circle packings: number theory,
블로그
- 구두장 이의 칼
- 이광연, 네이버 오늘의 과학, 2009-5-5
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=