순환군과 유한아벨군의 표현론

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 11월 9일 (수) 10:42 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • 유한 순환군의 표현론은 매우 간단함.
  • \(\mathbb{Z}/n\mathbb{Z}\) 의 기약표현은 모두 1차원으로 주어짐.
  • \(\zeta=e^{{2\pi i} \over n}\) 라 두자.
  • \(\chi \colon \mathbb Z/n\mathbb Z \to \mathbb C^{*}\) 는 \(\chi(1)\) 에 의해서 결정됨.
  • 한편, \(\chi(g)^n=\chi(g^n)=1\) 을 만족시켜야 하므로, \(\chi(1)=\zeta^r, r=0,1,\cdots,n-1\) 만이 가능하다.
  • 이렇게 주어진 n개의 기약표현이 크기가 n인 순환군의 모든 기약표현이 된다.

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

수학용어번역

 

 

블로그