월리스 곱 (Wallis product formula)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:58 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    

개요

  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다.

\(\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\)

\(\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}\)

  • 이는 다음을 말해준다.

\(\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\)

 

\(\prod_{k=1}^{\infty}{\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\)

 

 

월리스의 증명

  • 오일러 베타적분
    \(\int_0^{\pi}\sin^{p}\theta{d\theta}= B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{\Gamma(\frac{p}{2}+1)}\)

 

 

역사

  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트(1596년 3월-1650년 2월)
  • 뉴턴(1643년 1월-1727년 3월)

 

 

메모

 

 

관련된 항목들

 

 

사전형태의 자료

 

 

블로그