이차 수체에 대한 디리클레 유수 (class number) 공식

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 9월 10일 (목) 08:11 판
둘러보기로 가기 검색하러 가기
데데킨트 제타함수
  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨

\(\zeta_{K}(s)=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}=\prod_{\wp \text{:prime ideals}} \frac{1}{1-N(\wp)^{-s}}=\zeta(s)L(\chi,s)\)

\(\zeta(s)\) 는 리만제타함수와 리만가설 항목을 참조

\(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시키는 준동형사상 \(\chi \colon(\mathbb{Z}/d_K\mathbb{Z})^\times \to \mathbb C^{*}\)

\(L(\chi,s)\)는 디리클레 L 함수(등차수열의 소수분포에 관한 디리클레 정리 참조)

 

 

디리클레 class number 공식

(정리) 디리클레 class number 공식
 복소 이차 수체(imaginary quadratic field) \(K\)에 대하여, 다음 등식이 성립한다.
 \( \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2\pi h_K}{w_K \cdot \sqrt{|d_K|}}\)

\(h_K\) 는 class number, \(w_K\)는 \(O_K\) 에 있는 unit의 개수, \(d_K\)는 \(K\)의 판별식(discriminant)

 

 

\(K=\mathbb{Q}(\sqrt{-n})\)  의 경우  \(d_K = \begin{cases} -4n, & n \equiv 1 \pmod{4}\\ -n, & n \equiv 3 \pmod{4}\end{cases}\)

\(n \geq 5\) 이고 \(n \equiv 1 \pmod{4}\) 인 경우,  우변은 \(\frac{\pi h_K}{2\sqrt{n}}\)

\(n \geq 7\) 이고 \(n \equiv 3 \pmod{4}\) 인 경우,  우변은 \(\frac{\pi h_K}{\sqrt{n}}\)

 

증명

\(A=\frac{\sqrt{|d_K|}}{2}\)는 \(O_K\) 의 integral basis가 만드는 평행사변형의 면적이라고 하자.

\(\zeta_{K}(s)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}\)

\(a_n\) 은 norm 이 \(n\)인, 모든 ideal의 개수

\(a_n(C)\) 는 ideal class \(C\) 에서, norm 이 \(n\)인 ideal의 개수

증명의 아이디어

각각의 ideal class에 대하여, 주어진 norm 보다 작은 ideal의 개수를 estimate한다

즉, \(A_M=\sum_{n=1}^M a_n\) 의 크기를 알아보면 된다.

  • Principal ideal class \(C\)
    • \(A_M(C)=\sum_{n=1}^M a_n(C)\)
    • \(|A_M(C)-\frac{\pi}{Aw}M|\leq C \sqrt{M}\), C는 적당한 상수
  • 다른 아이디얼 클래스 \(C'\)
    • \(A_M(C')=\sum_{n=1}^M a_n(C')\)
    • \(|A_M(C')-\frac{\pi}{Aw}M|\leq C' \sqrt{M}\) 임을 보일 수 있다.
  • class number의 유한성에 의하여, 적당한 상수 \(C_K\)가 존재하여
    \(|A_M-\frac{\pi h}{Aw}M|\leq C_K \sqrt{M}\) 가 성립한다.

다음과 같이 L-급수를 정의하자.

\(f(s)=\sum_{n=1}^{\infty}(a_n-\frac{h\pi}{Aw}) \frac{1}{n^s}\)

위에서 얻은 부등식에 의하여, 다음부등식을 얻는다.

\(|\sum_{n=1}^{M}(a_n-\frac{h\pi}{Aw})|=|A_M-\frac{\pi h}{Aw}M|\leq C_K \sqrt{M}\)

따라서 

\(f(s)=\sum_{n=1}^{\infty}(a_n-\frac{h\pi}{Aw}) \frac{1}{n^s}\) 는 \(s > \frac{1}{2}\) 에서 수렴하고, \(f(1)\) 이 존재한다.

\(s > 1\) 이면, \(f(s)=\sum_{n=1}^{\infty}(a_n-\frac{h\pi}{Aw}) \frac{1}{n^s}=\zeta_{K}(s)-\frac{h\pi}{Aw}\zeta(s)\)

\(\lim_{s\to 1} (s-1)\zeta_K(s) =\lim_{s\to 1} (s-1)f(s)+\lim_{s\to 1} (s-1)\frac{h\pi}{Aw}\zeta(s)=\frac{h\pi}{Aw}\)

 

 

응용

7이상의 소수 \(p \equiv 3 \pmod{4}\) 와  \(\chi(a)=$\left(\frac{a}{p}\right)\) 를 정의하자.

\(K=\mathbb{Q}(\sqrt{-p})\) 라 두면, \(d_K=-p\)이며  \(\chi(a)=$\left(\frac{a}{p}\right)\) 는  \(d_K\)를 나누지 않는 소수 \(p\)에 대하여 \(\chi(p)=\left(\frac{d_K}{p}\right)\) 를 만족시킨다. 

 

 \(\chi(-1)=-1\) 이므로 \(\chi\) 는 odd

등차수열의 소수분포에 관한 디리클레 정리에 있는 결과로부터

\(L(1,\chi)=\frac{i\pi \tau(\chi)}{p}\sum_{1}^{p-1}\bar\chi(a)\frac{a}{p}=\frac{i\pi \tau(\chi)}{p}\sum_{1}^{p-1}\chi(a)\frac{a}{p}\)

를 얻고, 다른 한편으로 디리클레 class number 공식으로부터

\(L(1,\chi)=\frac{\pi h}{\sqrt p}\)

가우스합 으로부터 \(\tau (\chi)=i\sqrt p\)

이제 위의 두 값을 비교하면, \(h=\frac{\sqrt p }{\pi}\frac{i\pi\tau(\chi)}{p}\sum_{a=1}^{p-1}\chi(a)\frac{a}{p}=-\sum_{a=1}^{p-1}(\frac{a}{p})\frac{a}{p}\)

이로부터 소수 \(p\)에 대하여 이차비잉여의 합이 이차잉여의 합보다 크다는 것을 알 수 있다.

 

 

 

순환소수 전개를 통한 class number

 

하위주제들

 

 

 

하위페이지

 

 

메모

(정리) class number 공식

   \( \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot \operatorname{Reg}_K}{w_K \cdot \sqrt{|D_K|}}\)

 

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상