자연수의 분할(partition)과 rank/crank 목록
이 항목의 스프링노트 원문주소
개요
- rank of a partition= the largest part of the partition minus the number of parts
목록
1의 분할
- 분할수 = 1
- 틀:1
2의 분할
- 분할수 = 2
- {{2},{1,1}}
3의 분할
- 분할수 = 3
- {{3},{2,1},{1,1,1}}
4의 분할
- 분할수 = 5
- {{4},{3,1},{2,2},{2,1,1},{1,1,1,1}}
5의 분할
- 분할수 = 7
- {{5},{4,1},{3,2},{3,1,1},{2,2,1},{2,1,1,1},{1,1,1,1,1}}
6의 분할
- 분할수 = 1
- 틀:1
{{6},{5,1},{4,2},{4,1,1},{3,3},{3,2,1},{3,1,1,1},{2,2,2},{2,2,1,1},{2,1,1,1,1},{1,1,1,1,1,1}}
7의 분할
{{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
8의 분할
{{8},{7,1},{6,2},{6,1,1},{5,3},{5,2,1},{5,1,1,1},{4,4},{4,3,1},{4,2,2},{4,2,1,1},{4,1,1,1,1},{3,3,2},{3,3,1,1},{3,2,2,1},{3,2,1,1,1},{3,1,1,1,1,1},{2,2,2,2},{2,2,2,1,1},{2,2,1,1,1,1},{2,1,1,1,1,1,1},{1,1,1,1,1,1,1,1}}
9의 분할
{9}, rank=8≡3 (mod 5)
{8,1}, rank=6≡1 (mod 5)
{7,2}, rank=5≡0 (mod 5)
{7,1,1}, rank=4≡4 (mod 5)
{6,3}, rank=4≡4 (mod 5)
{6,2,1}, rank=3≡3 (mod 5)
{6,1,1,1}, rank=2≡2 (mod 5)
{5,4}, rank=3≡3 (mod 5)
{5,3,1}, rank=2≡2 (mod 5)
{5,2,2}, rank=2≡2 (mod 5)
{5,2,1,1}, rank=1≡1 (mod 5)
{5,1,1,1,1}, rank=0≡0 (mod 5)
{4,4,1}, rank=1≡1 (mod 5)
{4,3,2}, rank=1≡1 (mod 5)
{4,3,1,1}, rank=0≡0 (mod 5)
{4,2,2,1}, rank=0≡0 (mod 5)
{4,2,1,1,1}, rank=-1≡4 (mod 5)
{4,1,1,1,1,1}, rank=-2≡3 (mod 5)
{3,3,3}, rank=0≡0 (mod 5)
{3,3,2,1}, rank=-1≡4 (mod 5)
{3,3,1,1,1}, rank=-2≡3 (mod 5)
{3,2,2,2}, rank=-1≡4 (mod 5)
{3,2,2,1,1}, rank=-2≡3 (mod 5)
{3,2,1,1,1,1}, rank=-3≡2 (mod 5)
{3,1,1,1,1,1,1}, rank=-4≡1 (mod 5)
{2,2,2,2,1}, rank=-3≡2 (mod 5)
{2,2,2,1,1,1}, rank=-4≡1 (mod 5)
{2,2,1,1,1,1,1}, rank=-5≡0 (mod 5)
{2,1,1,1,1,1,1,1}, rank=-6≡4 (mod 5)
{1,1,1,1,1,1,1,1,1}, rank=-8≡2 (mod 5)
10의 분할
{{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
11의 분할
{{11},{10,1},{9,2},{9,1,1},{8,3},{8,2,1},{8,1,1,1},{7,4},{7,3,1},{7,2,2},{7,2,1,1},{7,1,1,1,1},{6,5},{6,4,1},{6,3,2},{6,3,1,1},{6,2,2,1},{6,2,1,1,1},{6,1,1,1,1,1},{5,5,1},{5,4,2},{5,4,1,1},{5,3,3},{5,3,2,1},{5,3,1,1,1},{5,2,2,2},{5,2,2,1,1},{5,2,1,1,1,1},{5,1,1,1,1,1,1},{4,4,3},{4,4,2,1},{4,4,1,1,1},{4,3,3,1},{4,3,2,2},{4,3,2,1,1},{4,3,1,1,1,1},{4,2,2,2,1},{4,2,2,1,1,1},{4,2,1,1,1,1,1},{4,1,1,1,1,1,1,1},{3,3,3,2},{3,3,3,1,1},{3,3,2,2,1},{3,3,2,1,1,1},{3,3,1,1,1,1,1},{3,2,2,2,2},{3,2,2,2,1,1},{3,2,2,1,1,1,1},{3,2,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1},{2,2,2,2,2,1},{2,2,2,2,1,1,1},{2,2,2,1,1,1,1,1},{2,2,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1}}
12의 분할
{{12},{11,1},{10,2},{10,1,1},{9,3},{9,2,1},{9,1,1,1},{8,4},{8,3,1},{8,2,2},{8,2,1,1},{8,1,1,1,1},{7,5},{7,4,1},{7,3,2},{7,3,1,1},{7,2,2,1},{7,2,1,1,1},{7,1,1,1,1,1},{6,6},{6,5,1},{6,4,2},{6,4,1,1},{6,3,3},{6,3,2,1},{6,3,1,1,1},{6,2,2,2},{6,2,2,1,1},{6,2,1,1,1,1},{6,1,1,1,1,1,1},{5,5,2},{5,5,1,1},{5,4,3},{5,4,2,1},{5,4,1,1,1},{5,3,3,1},{5,3,2,2},{5,3,2,1,1},{5,3,1,1,1,1},{5,2,2,2,1},{5,2,2,1,1,1},{5,2,1,1,1,1,1},{5,1,1,1,1,1,1,1},{4,4,4},{4,4,3,1},{4,4,2,2},{4,4,2,1,1},{4,4,1,1,1,1},{4,3,3,2},{4,3,3,1,1},{4,3,2,2,1},{4,3,2,1,1,1},{4,3,1,1,1,1,1},{4,2,2,2,2},{4,2,2,2,1,1},{4,2,2,1,1,1,1},{4,2,1,1,1,1,1,1},{4,1,1,1,1,1,1,1,1},{3,3,3,3},{3,3,3,2,1},{3,3,3,1,1,1},{3,3,2,2,2},{3,3,2,2,1,1},{3,3,2,1,1,1,1},{3,3,1,1,1,1,1,1},{3,2,2,2,2,1},{3,2,2,2,1,1,1},{3,2,2,1,1,1,1,1},{3,2,1,1,1,1,1,1,1},{3,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2},{2,2,2,2,2,1,1},{2,2,2,2,1,1,1,1},{2,2,2,1,1,1,1,1,1},{2,2,1,1,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1,1,1}}
12의 분할
{12}, rank=11≡4 (mod 7)
{11,1}, rank=9≡2 (mod 7)
{10,2}, rank=8≡1 (mod 7)
{10,1,1}, rank=7≡0 (mod 7)
{9,3}, rank=7≡0 (mod 7)
{9,2,1}, rank=6≡6 (mod 7)
{9,1,1,1}, rank=5≡5 (mod 7)
{8,4}, rank=6≡6 (mod 7)
{8,3,1}, rank=5≡5 (mod 7)
{8,2,2}, rank=5≡5 (mod 7)
{8,2,1,1}, rank=4≡4 (mod 7)
{8,1,1,1,1}, rank=3≡3 (mod 7)
{7,5}, rank=5≡5 (mod 7)
{7,4,1}, rank=4≡4 (mod 7)
{7,3,2}, rank=4≡4 (mod 7)
{7,3,1,1}, rank=3≡3 (mod 7)
{7,2,2,1}, rank=3≡3 (mod 7)
{7,2,1,1,1}, rank=2≡2 (mod 7)
{7,1,1,1,1,1}, rank=1≡1 (mod 7)
{6,6}, rank=4≡4 (mod 7)
{6,5,1}, rank=3≡3 (mod 7)
{6,4,2}, rank=3≡3 (mod 7)
{6,4,1,1}, rank=2≡2 (mod 7)
{6,3,3}, rank=3≡3 (mod 7)
{6,3,2,1}, rank=2≡2 (mod 7)
{6,3,1,1,1}, rank=1≡1 (mod 7)
{6,2,2,2}, rank=2≡2 (mod 7)
{6,2,2,1,1}, rank=1≡1 (mod 7)
{6,2,1,1,1,1}, rank=0≡0 (mod 7)
{6,1,1,1,1,1,1}, rank=-1≡6 (mod 7)
{5,5,2}, rank=2≡2 (mod 7)
{5,5,1,1}, rank=1≡1 (mod 7)
{5,4,3}, rank=2≡2 (mod 7)
{5,4,2,1}, rank=1≡1 (mod 7)
{5,4,1,1,1}, rank=0≡0 (mod 7)
{5,3,3,1}, rank=1≡1 (mod 7)
{5,3,2,2}, rank=1≡1 (mod 7)
{5,3,2,1,1}, rank=0≡0 (mod 7)
{5,3,1,1,1,1}, rank=-1≡6 (mod 7)
{5,2,2,2,1}, rank=0≡0 (mod 7)
{5,2,2,1,1,1}, rank=-1≡6 (mod 7)
{5,2,1,1,1,1,1}, rank=-2≡5 (mod 7)
{5,1,1,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,4,4}, rank=1≡1 (mod 7)
{4,4,3,1}, rank=0≡0 (mod 7)
{4,4,2,2}, rank=0≡0 (mod 7)
{4,4,2,1,1}, rank=-1≡6 (mod 7)
{4,4,1,1,1,1}, rank=-2≡5 (mod 7)
{4,3,3,2}, rank=0≡0 (mod 7)
{4,3,3,1,1}, rank=-1≡6 (mod 7)
{4,3,2,2,1}, rank=-1≡6 (mod 7)
{4,3,2,1,1,1}, rank=-2≡5 (mod 7)
{4,3,1,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,2,2,2}, rank=-1≡6 (mod 7)
{4,2,2,2,1,1}, rank=-2≡5 (mod 7)
{4,2,2,1,1,1,1}, rank=-3≡4 (mod 7)
{4,2,1,1,1,1,1,1}, rank=-4≡3 (mod 7)
{4,1,1,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,3,3,3}, rank=-1≡6 (mod 7)
{3,3,3,2,1}, rank=-2≡5 (mod 7)
{3,3,3,1,1,1}, rank=-3≡4 (mod 7)
{3,3,2,2,2}, rank=-2≡5 (mod 7)
{3,3,2,2,1,1}, rank=-3≡4 (mod 7)
{3,3,2,1,1,1,1}, rank=-4≡3 (mod 7)
{3,3,1,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,2,2,2,1}, rank=-3≡4 (mod 7)
{3,2,2,2,1,1,1}, rank=-4≡3 (mod 7)
{3,2,2,1,1,1,1,1}, rank=-5≡2 (mod 7)
{3,2,1,1,1,1,1,1,1}, rank=-6≡1 (mod 7)
{3,1,1,1,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,2,2,2,2}, rank=-4≡3 (mod 7)
{2,2,2,2,2,1,1}, rank=-5≡2 (mod 7)
{2,2,2,2,1,1,1,1}, rank=-6≡1 (mod 7)
{2,2,2,1,1,1,1,1,1}, rank=-7≡0 (mod 7)
{2,2,1,1,1,1,1,1,1,1}, rank=-8≡6 (mod 7)
{2,1,1,1,1,1,1,1,1,1,1}, rank=-9≡5 (mod 7)
{1,1,1,1,1,1,1,1,1,1,1,1}, rank=-11≡3 (mod 7)
재미있는 사실
역사
메모
Ramanujan's congruences and Dyson's crank
George E. Andrews*† and Ken Ono‡
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266147/
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)