타원곡선 y²=x³-x
http://bomber0.myid.net/ (토론)님의 2009년 12월 24일 (목) 10:54 판
이 항목의 스프링노트 원문주소
개요
- \(y^2=x^3-x\)
[/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif] - 유리수해
\(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\) - 주기
\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
\(2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\) - 모듈라 군, j-invariant and the singular moduli 의 special values 부분과 비교
모듈라 형식
- 유리수체 위의 해의 개수
\(E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3+x^2+4x+4\}\cup \{(\infty,\infty})\}\)
\(M_p=\#E(\mathbb{F}_p)\)
\(a_p=p+1-M_p\) - 모듈라 형식
\(f(\tau)={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)