콕세터 군 H3
Pythagoras0 (토론 | 기여)님의 2014년 6월 24일 (화) 17:20 판
개요
- 다음과 같이 정의되는 콕세터 군 $H_3$
$$ \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^3=(r_2r_3)^5=1\right\rangle $$
- 불변량
$$ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} $$
푸앵카레 다항식
- $H_3$의 푸앵카레 다항식은 다음과 같다
$$ \begin{aligned} P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} \end{aligned} $$
루트 시스템
- 30개의 원소로 구성
- 다음과 같은 세 벡터가 simple system을 이룬다
$$ \begin{align} r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ r_3= \beta(2 \alpha , -1-2 \alpha , 1) \end{align} $$ 여기서 $\alpha=\cos \pi/5, \beta=\cos 2\pi/5$
콕세터 평면으로의 사영