지겔-아이젠슈타인 급수
Pythagoras0 (토론 | 기여)님의 2014년 7월 11일 (금) 21:28 판 (새 문서: ==관련된 항목들== * 스미스-민코프스키-지겔 질량 공식 * 아이젠슈타인 급수(Eisenstein series) ==관련논문== * Pantchichkine, Alexei. 2012. “A...)
관련된 항목들
관련논문
- Pantchichkine, Alexei. 2012. “Analytic Constructions of P-Adic L-Functions and Eisenstein Series.” arXiv:1204.3878 [math], April. http://arxiv.org/abs/1204.3878.
- Kudla, Stephen S. "Some extensions of the Siegel-Weil formula." Eisenstein series and applications. Birkhäuser Boston, 2008. 205-237.
- King, Oliver. 2003. “A Mass Formula for Unimodular Lattices with No Roots.” Mathematics of Computation 72 (242): 839–63. doi:10.1090/S0025-5718-02-01455-2.
- Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
- Shimura, Goro. “The Number of Representations of an Integer by a Quadratic Form.” Duke Mathematical Journal 100, no. 1 (1999): 59–92. doi:10.1215/S0012-7094-99-10002-0.
- Yang, Tonghai. “An Explicit Formula for Local Densities of Quadratic Forms.” Journal of Number Theory 72, no. 2 (1998): 309–56. doi:10.1006/jnth.1998.2258.
- Walling, Lynne H. “Explicit Siegel Theory: An Algebraic Approach.” Duke Mathematical Journal 89, no. 1 (1997): 37–74. doi:10.1215/S0012-7094-97-08903-1.
- Katsurada, Hidenori. "An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$." Nagoya Mathematical Journal 146 (1997): 199-223.
- Kitaoka, Yoshiyuki. 1986. “Local Densities of Quadratic Forms and Fourier Coefficients of Eisenstein Series.” Nagoya Mathematical Journal 103: 149–60.
- Kudla, Stephen S. "Seesaw dual reductive pairs." Automorphic forms of several variables (Katata, 1983) 46 (1983): 244-268.