케플러의 법칙, 행성운동과 타원
Pythagoras0 (토론 | 기여)님의 2014년 8월 30일 (토) 01:49 판
케플러의 법칙
- 행성은 태양을 하나의 초점으로 하는 타원 궤도를 돌고 있다
- 태양과 행성을 연결하는 직선은 일정한 속도의 면적을 그린다 (The line joining the sun to a planet sweeps out equal areas in equal times.)
- 행성운동의 공전주기의 제곱은 타원 궤도의 장축의 길이의 세제곱에 비례한다
- http://www.rowan.edu/colleges/las/departments/math/facultystaff/osler/ELLIPSE2.pdf
- 케플러의 제2법칙
\(r(\theta)=\frac{p}{1+e \cos(\theta)}\)
\(e=\frac{\sqrt{a^2-b^2}}{a}\)
e: 이심율
p : 타원의 parameter, \(a=\frac{p}{1-e^2}\)타원
케플러 방정식
- \(M=E-e \sin E\)
- M : mean anomaly
- E : eccentric anomaly
- http://www.scilogs.eu/en/blog/spacetimedreamer/2009-06-24/the-kepler-equation
- http://www.jgiesen.de/kepler/kepler.html
뉴턴 법칙으로부터의 유도
- \(a_r=\ddot{r} - r\dot{\theta}^2=k/r^2\)
- \(a_\theta=r\ddot{\theta} + 2\dot{r} \dot{\theta}=0\)
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxZWNiN2Y2ODktOWQ1NC00MTljLTlkMGEtN2YwNjEwYjhmZWM2&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- The On-Line Encyclopedia of Integer Sequences
사전형태의 자료
리뷰, 에세이, 강의노트
- Hsiang, Wu-Yi, and Eldar Straume. “Revisiting the Mathematical Synthesis of the Laws of Kepler and Galileo Leading to Newton’s Law of Universal Gravitation.” arXiv:1408.6758 [math], August 28, 2014. http://arxiv.org/abs/1408.6758.
- Colwell, Peter. 1992. Bessel Functions and Kepler's Equation. The American Mathematical Monthly 99, no. 1 (January 1): 45-48. doi:10.2307/2324547.
- Wilson, Curtis. 1994. Newton's Orbit Problem: A Historian's Response. The College Mathematics Journal 25, no. 3 (May 1): 193-200. doi:10.2307/2687647.
- Haandel, Maris, and Gert Heckman. 2009. Teaching the Kepler Laws for Freshmen. The Mathematical Intelligencer 31, no. 2 (3): 40-44. doi:10.1007/s00283-008-9022-x.
- How Kepler Discovered the Elliptical Orbit, Eric J. Aiton, The Mathematical Gazette, Vol. 59, No. 410 (Dec., 1975), pp. 250-260
- Computation of Planetary Orbits, Donald A. Teets and Karen Whitehead, The College Mathematics Journal, Vol. 29, No. 5 (Nov., 1998), pp. 397-404
- Central Force Laws, Hodographs, and Polar Reciprocals, Don Chakerian, Mathematics Magazine, Vol. 74, No. 1 (Feb., 2001), pp. 3-18