케플러의 법칙, 행성운동과 타원

수학노트
Pythagoras0 (토론 | 기여)님의 2015년 1월 2일 (금) 18:30 판 (→‎관련도서)
둘러보기로 가기 검색하러 가기

케플러의 법칙

  • 행성은 태양을 하나의 초점으로 하는 타원 궤도를 돌고 있다
  • 태양과 행성을 연결하는 직선은 같은 시간에 같은 면적을 쓸고 지나간다
  • 행성운동의 공전주기의 제곱은 타원 궤도의 장축의 길이의 세제곱에 비례한다


제1법칙

  • 장축의 길이가 $2a$, 단축의 길이가 $2b$인 타원의 이심률 $e$는 다음과 같이 정의된다

\[e=\frac{\sqrt{a^2-b^2}}{a}\]

  • 태양을 원점에 두었을 때, 행성의 극좌표 $(r,\theta)$는 다음을 만족한다

\[r(\theta)=\frac{a(1-e^2)}{1+e \cos(\theta)}\]


제2법칙

  • 등면적 법칙

케플러의 법칙, 행성운동과 타원1.gif



케플러 방정식


뉴턴 법칙으로부터의 유도

  • \(a_r=\ddot{r} - r\dot{\theta}^2=k/r^2\)
  • \(a_\theta=r\ddot{\theta} + 2\dot{r} \dot{\theta}=0\)
  • 두번째 식으로부터 $r^2 \dot{\theta}$가 상수임을 알 수 있다. 이로부터 케플러의 제2법칙을 얻는다


메모

  • Newton on Abelian functions


관련된 항목들


매스매티카 파일 및 계산 리소스


사전형태의 자료


리뷰, 에세이, 강의노트


관련도서