Symmetry and conserved quantitiy : Noether's theorem

수학노트
imported>Pythagoras0님의 2013년 4월 1일 (월) 15:22 판
둘러보기로 가기 검색하러 가기

introduction

  • fields
  • the condition for the extreme of a functional leads to Euler-Lagrange equation
  • invariance of functional imposes another constraint
  • Noether's theorem : extreme+invariance -> conservation law
  • 틀:수학노트

 

 

field theoretic formulation

  • \(\alpha_{s}\) continuous symmetry with parameter s, i.e. the action does not change by the action of $\alpha_{s}$
  • define the current density \(j(x)=(j^0(x),j^1(x),j^2(x),j^3(x))\) by

\[j^{\mu}(x)= \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \phi )}\left(\frac{\partial\alpha_{s}(\phi)}{\partial s} \right) \]

  • then it obeys the continuity equation

\[\partial_{\mu} j^{\mu}=\sum_{\mu=0}^{3}\frac{\partial j^{\mu}}{\partial x^{\mu}}=0\]

  • \(j^{0}(x)\) density of some abstract fluid
  • Put $\rho:=j_0$ and \(\mathbf{J}=(j_x,j_y,j_z)\) velocity of this abstract fluid at each space time point
  • conserved charge

\[Q(t)=\int_V \rho \,d^3 x\] \[\frac{dQ}{dt}=0\]

gauge theory

  • to each generator $T_a$, associate the current density

\[j_{a}^{\mu}(x)= \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \phi )}iT_a \phi\]

 

history

 

 

related items

 

 

encyclopedia


expositions