Belyi map

수학노트
imported>Pythagoras0님의 2012년 10월 28일 (일) 13:52 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

==introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only.
  • Belyi map gives rise to a projective curve

 

 

==Belyi maps of degree 2

  • Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2

 

 

==Grobner techniques

  • start with three permutations (12), (23), (132). They generate S_3.
  • Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0

 

 

==complex analytic method

  • using modular forms

 

 

==p-adic method

 

 

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

==blogs

 

 

==experts on the field

 

 

==links