Belyi map

수학노트
imported>Pythagoras0님의 2013년 12월 8일 (일) 13:47 판
둘러보기로 가기 검색하러 가기

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$

 

 

Grobner techniques

  • start with three permutations $(12), (23), (132)$. They generate $S_3$.
  • Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 


 

history

 

 

related items

 

expositions


encyclopedia