Random matrix
imported>Pythagoras0님의 2014년 10월 28일 (화) 03:51 판 (→Gaussian Unitary Ensemble(GUE) hypothesis)
introduction
- The ensembles of random matrices obtained are called Gaussian Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE) Ensembles for = 1, = 2, and = 4 respectively.
- Catalan numbers and random matrices
random self-adjoint matrices
- Wigner matrices
- Band magtrices
- Wishart matrix
- Heavy tails matrices
- Adjacency matrix of Erdos-Renyi graph
Gaussian Wigner matrices
- http://www.math.ucla.edu/~shlyakht/berkeley-07/conference/contrib/peche-talk.pdf
- http://www.math.ucla.edu/~shlyakht/berkeley-07/conference/contrib/guionnet-talk.pdf
Gaussian Unitary Ensemble(GUE) hypothesis
- Wigner's work on neutron scattering resonances
- Hugh Montgomety and Freeman Dyson
- pair correlation function of zeroes of riemann zeta function
- GUE is a big open problem but proven for random matrix models
- GUE Tracy-Widom distribution
- eigenvalue distributions of the classical Gaussian random matrices ensembles
- distribution of their largest eigenvalue in the limit of large matrices
\[F_2(s)=\exp\left(-\int_{s}^{\infty}(x-s)q^2(x)dx\right)\] \[F_1(s)=\exp\left(-\frac{1}{2}\int_{s}^{\infty}q(x)dx\right)F_2(s)^{1/2}\] \[F_4(s/\sqrt{2})=\cosh\left(\frac{1}{2}\int_{s}^{\infty}q(x)dx\right)F_2(s)^{1/2}\]
- Painleve II equation
\[q''(s)=sq(s)+2q(s)^3\]
determinantal processes
- Random matrices and determinantal processes http://arxiv.org/abs/math-ph/0510038
- http://terrytao.wordpress.com/2009/08/23/determinantal-processes/
history
- 1920-30 studied by statisticians
- 1950 nuclear physics to describe the energy levels distribution of heavy nuclei
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
books
- Large random matrices: lectures on macroscopic asymptotics http://www.mathematik.uni-muenchen.de/~lerdos/SS09/Random/guionnetcours.pdf
expositions
- “At the Far Ends of a New Universal Law | Quanta Magazine.” Accessed October 28, 2014. http://www.quantamagazine.org/20141015-at-the-far-ends-of-a-new-universal-law/.
- Random matrices as a paradigm
- http://www.phys.ust.hk/yilong/research/PhaseSpaceNetHan.pdf
- http://www.ims.nus.edu.sg/Programs/randommatrix/files/sverdu_p.pdf
- Universality of Wigner Random Matrices: a Survey of Recent Results
- http://www.mathematik.uni-muenchen.de/~lerdos/SS09/Random/plan.html
- Introduction to Random Matrix Theory from An Invitation to Modern Number Theory http://web.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/IntroRMT_Math54.pdf
- http://stuff.mit.edu/people/raj/Acta05rmt.pdf
articles
- A Note on the Eigenvalue Density of Random MatricesMichael K.-H. Kiessling and Herbert Spohn